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ABSTRACT 
 

  
CmeABC, a multidrug efflux pump, contributes to Campylobacter resistance to a 

broad spectrum of antimicrobial agents and is also essential for Campylobacter 

colonization by mediation of bile resistance.  We hypothesize that inhibition of CmeABC 

will not only control antibiotic resistance but also increase the susceptibility of 

Campylobacter to in vivo bile salts, consequently decreasing the colonization level of 

Campylobacter. Using both in vitro and in vivo systems, we examined the effect of an 

efflux pump inhibitor (EPI) MC-207,110 on the susceptibility of Campylobacter  to 

various antimicrobials.  Presence of the EPI resulted in 2- to 2048-fold reduction in the 

MICs of antimicrobials known to be substrates of CmeABC pump in all Campylobacter 

strains.  Particularly, the MICs of selected bile salts were dramatically decreased 64- to 

512-fold when the EPI was used.  The intrinsic and acquired resistance of C. jejuni to 

macrolide was decreased significantly (32- to 64-fold reduction in the MIC of 

erythromycin) in the presence of the EPI while the MICs of fluoroquinolones were only 

slightly decreased (2-4 folds).  Investigation of 57 clinical Campylobacter isolates of 

various origins further showed that the EPI decreased the MICs of erythromycin (2- to 

512-fold) in all isolates.  Compared to wild-type strains, the isogenic CmeB mutants 

displayed much lower magnitude of reduction in the MICs of antimicrobials in the 

presence of the EPI.  The inhibitory effect of the EPI was does-dependents and as low as 

0.5 μg/ml of the EPI resulted in decreased MIC of antimicrobials in C. jejuni.  Presence 

of the EPI decreased the frequency of emergence of erythromycin-resistant mutants in C. 

jejuni (<10-11), which is well below normal frequency of approximate 10-8.  Notably, MIC 
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of erythromycin was also greatly decreased (> 4-fold) in CmeB mutants in the presence 

of EPI, suggesting the existence of other pump(s) involved in macrolide resistance in C. 

jejuni.  Chicken colonization study demonstrated that oral administration of EPI 

dramatically reduced the colonization of Campylobacter in the intestine.  In addition, 

anti-CmeC antibodies also enhanced the susceptibility of C. jejuni to bile salt, suggesting 

immune intervention by targeting CmeC may be another effective strategy to inhibit 

CmeABC efflux pump. Together, these findings indicate that inhibition of CmeABC by 

specific EPI or antibodies is a promising approach to control antibiotic resistance and 

colonization of Campylobacter in human and animals.  

 

Key Words:  Campylobacter, efflux pumps, efflux pump inhibitors 
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1.  REVIEW OF LITERATURE 

 

Campylobacter and the Poultry Reservoir 

 

Campylobacter, a microaerophilic Gram-negative bacterium, is the leading 

foodborne human pathogen in the United States and many other industrialized countries 

(Altekruse et al., 1999; Friedman et al., 2000). There are an estimated 2.1 to 2.4 million 

reported cases in the United States each year, with even more cases going unreported 

(Mead et al., 1999).  Medical and production costs associated with Campylobacter 

average 1.5 to 8.0 billion dollars each year in the United States (Buzby et al., 1997).  This 

pathogenic organism causes watery diarrhea, hemorrhagic colitis, and even severe 

abdominal pain (Skirrow and Blaser, 2000). In rare cases Campylobacter can also be 

associated with Guillian-Barre syndrome, which is an autoimmune disease that may lead 

to respiratory muscle compromise and death (Nachamkin et al., 1998).  The infective 

dose can be as low as 5-800 organisms (Black et al., 1988).  Through oral ingestion, C. 

jejuni enters the host intestine via stomach acid barrier and colonizes the distal ileum and 

cecum.  There are more than 14 different species of Campylobacter.  However, human 

Campylobacter illness are primarily caused by C. jejuni (>99%) and secondarily by C. 

coli (Allos et al., 2001).  Growth conditions for C. jejuni are very specific.  C. jejuni 

survive poorly outside of intestine and replication does not occur readily in the 

environment.  C. jejuni requires optimal growth temperatures between 37 oC and 42 oC. 

In addition, C.jejuni grows best in a microaerophilic environment, such as an atmosphere 

of 5% O2, 10% CO2, and 85% N2.  Although these growth conditions are stringent, 
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Campylobacter is still able to cause more infections than Salmonella, Shigella and E. coli 

O157 (Altekruse et al., 1999).   

 

Although Campylobacter is widely present in wild and domestic animals (Jacobs-

Reitsma et al., 1997, 2000), poultry are considered the major reservoir of Campylobacter, 

because this organism is highly prevalent in poultry and the majority of human 

campylobacteriosis are epidemiologically linked to consumption of contaminated poultry 

products  (Allos et al., 2001).  Campylobacter is also highly prevalent in market-age 

broiler chickens and turkeys raised on organic or free-range farms (Avrain et al., 2003; 

Heuer et al., 2001; Rivoal et al., 1999), indicating that different production systems are 

equally vulnerable to invasion by this organism.  Besides chickens and turkeys, 

Campylobacter species also infect ducks, ostriches, and geese (Aydin et al., 2001; 

Wallace et al., 1998; Yogasundram et al., 1989).  Campylobacter is carried in the 

intestinal tract of birds and excreted in feces.  The number of Campylobacter in intestinal 

contents of broiler chickens can be as high as 108 CFU g-1 feces (Stern et al., 1995; 

Wempe et al., 1983).  Although market-age broilers and turkeys are highly contaminated 

by Campylobacter, the prevalence in individual flocks varies greatly depending on the 

age of birds (Berndtson et al., 1996; Evans and Sayers, 2000; Kazwala et al., 1990; 

Shanker et al., 1988).  Campylobacter is rarely detected in broiler chickens less than 2-3 

weeks old under commercial production conditions, although newly hatched chickens can 

be experimentally infected with this pathogen (Sahin et al., 2002; Stern et al., 1988; 

Young et al., 1999).  For the majority of commercial flocks, Campylobacter infection is 

usually detected after the third week of age (Newell and Fearnley, 2003; Sahin et al., 
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2002).  Once a flock is infected by Campylobacter, most birds soon become colonized 

and shed large numbers of the organism.  Despite persistent and extensive colonization in 

chickens, this organism does not cause clinical disease in the poultry host under natural 

conditions (Beery et al., 1988; Meinersmann et al., 1991).  In poultry processing plants, 

carcasses and edible parts are often contaminated with C. jejuni, largely through contact 

with fecal materials.  Hence, a large number (up to 100% in summer months) of retail 

broilers is contaminated with C. jejuni (Ge et al., 2003; Willis and Murray, 1997), posing 

a major threat to public health. 

 

Horizontal transmission, or transmission within a population, is a major 

mechanism of infection of Campylobacter among chicken flocks.  Possible sources 

include feces, untreated drinking water, other farm animals, domestic pets, wildlife 

species, house flies, insects, equipment, transport vehicles and farm workers (Sahin et al., 

2002).  However, the most likely source of infection comes from one infected chicken 

passing it to another in a rapid fire succession.  While most evidence supports the theory 

of horizontal transmission, it is likely that Campylobacter infection is also mediated by 

vertical transmission, which is the transmission from hen to chick at the time of laying 

and/or hatching.  Reasoning behind this theory is that Campylobacter can be isolated 

from chicken eggs and in some cases from newly hatched chicks (Sahin et al., 2002).   
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Antibiotic Resistance in Campylobacter 

 

Development of antibiotic resistance is inevitable in bacteria, including 

Campylobacter, and every antibiotic that is introduced into market to date has limited  

time before it is no longer effective (Walsh et al., 2003).  In general, Campylobacter 

resistance to antibiotics is mediated by three mechanisms, including 1) synthesis of 

enzymes (e.g. β-lactamase) that modify or inactivate antibiotics, 2) alteration or 

protection of targets that results in reduced affinity to antibiotics (e.g. mutations in gyrA), 

and 3) active extrusion of drugs from Campylobacter cells through efflux transporters 

(e.g. CmeABC).  Detailed information on resistance mechanisms to different classes of 

antibiotics has been provided in recent reviews (Taylor and Tracz, 2005; Snelling et al., 

2005; Trieber and Taylor, 2000).  Antibiotic-resistant Campylobacter strains have rapidly 

increased throughout the world in the past decade, compromising the clinical 

effectiveness of antimicrobial treatments (Engberg et al., 2001; Taylor and Tracz, 2005).  

The factors contributing to the rising resistance are complex, and the extensive use of 

antimicrobial agents in human medicine and agriculture is considered the main driving 

force for the worldwide progression of antibiotic resistance in Campylobacter (Smith et 

al., 2000).   

 

The increasing resistance of C. jejuni to fluoroquinolones (FQs) and macrolides, 

the two drugs of choice for treating human campylobacteriosis, has become a major 

concern for public health.  FQs target bacterial DNA gyrase and topoisomerase IV, which 

catalyze the ATP-dependent negative supercoiling of DNA and are involved in DNA 
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replication, recombination, and transcription (Trieber and Taylor, 2000; Taylor and 

Tracz, 2005; Zhang et al., 2003).  Recent studies indicate that Campylobacter displays a 

hypermutable phenotype in response to in vivo treatment of poultry with FQ antibiotics, 

resulting in rapid emergence of FQ-resistant mutants in poultry (Luo et al., 2003; 

McDermott et al., 2002). Therefore, on July 28, 2005, the FDA issued a ban on the use of 

Baytril in poultry (an antibiotic nearly identical to FQ ciprofloxacin) to protect public 

health (see www.fda.gov/bbs/topics/news/2005/new01212.html).  Distinct from other 

Gram-negative bacteria, acquisition of FQ resistance in Campylobacter does not require 

stepwise accumulation of gyrA mutations and overexpression of efflux pumps, and is 

mainly mediated by single-step point mutations in gyrA in the presence of a constitutively 

expressed multidrug efflux pump (Zhang et al., 2003).  

 

FQs are losing effectiveness in clinical treatments due to the widespread 

resistance of Campylobacter to this class of antimicrobials (Engberg et al., 2001; Smith 

et al., 1999).  Consequently, erythromycin (a macrolide) is considered a best option for 

treating Campylobacter infections.  Unfortunately, Campylobacter resistance to 

macrolides is also on the rise (Engberg et al., 2001).  Macrolide antibiotics inhibit 

bacterial protein synthesis by binding to the 50S subunits of ribsome (Engberg et al., 

2001; Taylor and Tracz, 2005; Trieber and Taylor, 2000).  Campylobacter resistance to 

macrolides results from chromosomal mutations in the 23S RNA gene, which lead to 

reduced binding of macrolide antibiotics to the 50S subunit of ribosome (Engberg et al., 

2001; Taylor and Tracz, 2005).  Specifically, the A-2230-G mutation is associated with 

the majority of erythromycin-resistant Campylobacter (Ge et al., 2003; Jensen and 
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Aarestrup, 2001; Gibreel et al., 2005).   Multidrug efflux pump CmeABC also plays an 

important role in the intrinsic and acquired resistance to macrolides (Mamelli et al., 2005; 

Lin et al., 2002).  Other mechanisms such as methylation, which is involved in macrolide 

resistance in other bacteria, have not been associated with macrolide resistance in 

Campylobacter (Trieber and Taylor, 2000).   

 

The reported macrolide resistance rates vary with Campylobacter species and the 

animal hosts.  In general, C. coli has higher erythromycin resistance rates than C. jeuni, 

regardless of the source of isolation (Engberg et al., 2001; Saenz et al., 2000; Van 

Looveren et al., 2001).  Likewise, pigs and turkeys tend to harbor higher numbers of 

erythromycin-resistant Campylobacter than other animal species.  For example, a recent 

study in Italy reported that 3.1% C. jejuni and 45% C. coli from broilers are resistant to 

erythromycin, while 42.6% C. coli from pigs and 24.1% C. coli from humans are 

resistant to the same antibiotics (Pezzotti et al., 2003). Another study conducted in France 

showed erythromycin resistance in 0.3% Campylobacter from broiler chicken and 31% 

from turkey (Avrain et al., 2003). A recent survey of retail meats conducted in the U.S. 

showed that 40-50% Campylobacter isolates from chicken and 90-100% Campylobacter 

isolates from turkey were resistant to erythromycin (Ge et al., 2003).  

 

General Features of MDR Efflux Pumps in Gram-Negative Bacteria 

 

As a general and important mechanism for antimicrobial resistance, multidrug 

efflux systems (often named MDR pumps) contribute significantly  to antimicrobial 
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resistance by extruding structurally diverse antimicrobial agents out of bacterial cells 

(Poole, 2001a; Putman et al., 2000).  In pathogenic bacteria, there are many different 

types of multidrug efflux systems which vary in size, structure, and energy source (proton 

gradient or ATP hydrolysis (Putman et al., 2000).  In general, MDR efflux pumps can be 

categorized into five different superfamilies, including MFS (major facilitator 

superfamily), SMR (small multidrug resistance), RND (Resistance-Nodulation-cell 

Division), MATE (multidrug and toxic compound extrusion), and ABC (ATP-binding 

cassette) (Putman, 2000).  These efflux systems are broadly distributed and a single 

microorganism can have multiple efflux transporters of different families with 

overlapping substrate spectra (Poole, 2001a; Putman et al., 2000). 

 

One major and important family of MDR pumps in Gram-negative bacteria is 

RND efflux system, which consists of an inner membrane transporter, a periplasmic 

fusion protein, and an outer membrane protein (Zgurskaya and Nikaido, 2000). These 

three components function together and form a membrane pump to extrude 

antimicrobials out of cells. Genetically, many of the RND-type MDR efflux systems are 

encoded by three-gene operons located on bacterial chromosomes (Zgurskaya and 

Nikaido, 2000; Paulsen et al., 2001).  However, some RND-type efflux pumps, such as 

AcrAB from Escherichia coli (Ma et al., 1993), have an outer membrane component that 

is encoded by a separate gene physically unlinked with the other two members on the 

bacterial chromosome.  More detailed information about molecular properties of various 

types of bacterial MDR transporters is discussed in an excellent review by Putman et al. 

(2000).  
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A key feature of these MDR efflux systems, particularly RND type pump, is their 

ability to extrude a broad spectrum of substrates including various clinically relevant 

antibiotics (Poole, 2001a; Putman et al., 2000).  Overexpression of RND-type efflux 

pumps results in a MDR phenotype in bacterial pathogens and is considered a major 

mechanism of antibiotic resistance in a growing number of pathogenic bacteria (Poole, 

2001a; Putman et al., 2000; Van Bambeke et al., 2000).  Even without overexpression, 

constitutively expressed MDR pumps function synergistically with other non-efflux 

resistance mechanisms (such as target mutations) to confer high levels of antimicrobial 

resistance in bacteria (Lomovskaya et al., 1999; Oethinger et al., 2000; Wang et al., 2001; 

Luo et al., 2003).  The RND-type efflux systems also play an important role in bacterial 

resistance to a variety of antimicrobial compounds that are naturally present in animal 

hosts (e.g. bile salts) (Poole, 2001a; Putman et al., 2000; Gunn, 2000; Lin et al., 2003b; 

Thanassi et al., 1997; Rosenberg et al., 2003).  Major natural function of RND efflux 

system is proposed to be involved in the in vivo adaptation in various host niches (e.g. 

bile resistance in intestine) during infections (Poole, 2001a; Lin et al., 2003b; Lin et al., 

2005b; Webber and Piddock, 2003).  

 

The expression of bacterial MDR efflux pumps is usually controlled by 

transcriptional regulators that either repress or activate the transcription of the MDR 

efflux genes (Grkovic et al., 2002; Poole, 2001a).  Many of these regulators are local 

repressors that directly interact with the promoter regions of MDR efflux genes or 

operons.  The operator sequences that interact with the repressor molecules usually 

consist of inverted repeats (Grkovic et al., 2002).  Mutations in the repressors or 
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repressor-binding regions impede the repression and result in overexpression of efflux 

pumps, which consequently increases  bacterial resistance to structurally unrelated 

antimicrobial agents (Grkovic et al., 2002; Poole, 2001a; Putman et al., 2000).  Some 

MDR efflux systems are also controlled by global regulators, such as the marRAB 

regulon in E. coli (Alekshun and Levy, 1999b).  MarR is a repressor of marRAB, while 

marA encodes an activator that not only positively regulates marRAB but also activates a 

variety of genes (including acrAB) associated with resistance to antibiotics and oxygen 

stress (Alekshun et al., 2000; Alekshun and Levy, 1999b).  Mutations in marR 

substantially increase the expression of acrAB and confer E. coli resistance to a variety of 

antimicrobial agents (Alekshun and Levy, 1999a; Kern et al., 2000; Okusu et al., 1996).  

 

In addition to the mutation-based mechanisms that result in sustained 

overexpression of MDR efflux pumps in bacteria, the production of some MDR efflux 

pumps can be conditionally induced by structurally diverse substrates or by stress signals 

(Ahmed et al., 1994; Brooun et al., 1999; Grkovic et al., 1998; Kaatz and Seo, 1995; Kato 

et al., 1992; Ma et al., 1995; Masuda et al., 2000).  This induction is usually due to the 

direct interaction of the substrates with repressor molecules, which interferes with the 

binding of repressors to operator DNA and results in increased expression of MDR genes.  

Two repressors (QacR and AcrR) of such inducible MDR efflux pumps belong to the 

TetR family of transcriptional regulators, which share a conserved helix-turn-helix DNA-

binding motif at their N-terminal regions and have divergent C-terminal sequences that 

are involved in the binding to inducing compounds (Grkovic et al., 1998; Hillen and 

Berens, 1994).   
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Multidrug Efflux Systems in Campylobacter 

 

In contrast to the situation with specific resistance mechanisms, such as target 

mutations and enzyme modifications, little is known about the general antibiotic efflux 

mechanisms in Campylobacter.  In an early study (Charvalos et al. 1995), MDR C. jejuni 

isolates were selected by in vitro passage of the organism on pefloxacin-containing 

plates.  These isolates were not only resistant to FQs, but also resistant to other 

structurally unrelated antibiotics.  The results showed that resistant strains had less 

accumulation of antimicrobial substances than did wild-type strains, indicating the 

presence of MDR efflux pump systems (Charvalos et al., 1995).  However, the identities 

of putative MDR pumps and their role in efflux of antibiotics were not determined 

(Charvalos et al., 1995).  The genomic sequence of C. jejuni NCTC 11168 revealed 

several genes that share sequence homology with known MDR efflux pumps in bacterial 

pathogens (Parkhill et al., 2000).  Recently, two RND type multi-drug efflux pumps 

CmeABC and CmeDEF have been identified and functionally characterized (Akiba et al., 

2006; Lin et al., 2002, 2003, 2005a, b; Luo et al., 2003; Guo et al., 2005).     

 

MDR efflux pump CmeABC is encoded by a three-gene operon which encodes 

for CmeA (periplasmic linker protein), CmeB (inner membrane protein) and CmeC (outer 

membrane protein) (Lin et al., 2002).  Inactivation of the CmeABC pump by insertional 

mutagenesis substantially increased the susceptibility of C. jejuni to structurally diverse 

antimicrobial agents, including FQs, β-lactams, erythromycin, rifampin, ethidium 

bromide, heavy metals, detergents and various bile salts (Lin et al., 2002, 2003; Pumbwe 
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and Piddock, 2002).  This phenotypic change can be observed in different strain 

backgrounds.  Insertional mutation in cmeC resulted in the same changes in antibiotic 

susceptibility as those caused by cmeB mutation (Lin et al., 2003), indicating that 

inactivation of a single component in the system would cause malfunction of the 

CmeABC pump and further supporting the notion that the three members of CmeABC 

function together in the efflux of substrates (Lin et al., 2002).  The dramatic change in 

antibiotic susceptibility caused by inactivation of CmeABC in different Campylobacter 

strains suggests that this pump is a main player in mediating intrinsic resistance to 

antibiotics.  Although the role of CmeABC in the acquired antibiotic resistance in 

Campylobacter has not been well understood, partly because overproduction of CmeABC 

has not been linked to antibiotic resistance in clinical isolates, several studies (Lin et al., 

2002; Luo et al., 2003; Mamelli et al., 2005) provide compelling evidence that CmeABC 

can work synergistically together with other nonefflux mechanisms to confer high level 

of resistance to clinically important antibiotics, such as FQs and macrolides.   PCR and 

immunoblotting analysis showed that cmeABC was broadly distributed in various C. 

jejuni isolates and constitutively expressed in wild-type strains. 

 

One striking feature of CmeABC is its essential role in C. jejuni resistance to bile, 

a group of bactericidal detergents present in the intestinal tracts of animals (Lin et al., 

2003, 2005b).  This is a very important aspect because the efflux of these bile salts can 

allow Campylobacter to establish colonization without hindrance from the body’s natural 

defense mechanisms.  Inactivation of CmeB or CmeC resulted in malfunction of the 

CmeABC pump and drastically increased susceptibilities of C. jejuni to various bile salts. 



www.manaraa.com

 12

Addition of choleate (2 mM) in culture media impaired the in vitro growth of the cmeC 

mutant, but had no effect on the growth of the wild-type strain.  Bile concentration varied 

in duodenum, jejunum, and cecum of chicken intestine and the inhibitory effect of the 

intestinal extracts on the in vitro growth of Campylobacter was well correlated with the 

total bile concentration in the individual sections of chicken intestine. When inoculated 

into chickens, the wild-type strain colonized the birds as early as day 2 post-inoculation 

with a density as high as 107 CFU/g feces.  In contrast, both cmeB and cmeC mutants 

failed to colonize any of the inoculated chickens throughout the study.  The minimum 

infective dose for CmeABC mutant is at least 2.6 × 104 fold higher than that of the wild-

type strain.  Complementation of the cmeABC mutants with a wild-type cmeABC allele in 

trans fully restored the in vitro growth in bile-containing media and the in vivo 

colonization to the levels of the wild-type strain. These results provide compelling 

evidence that CmeABC, by mediating resistance to bile salts in the intestinal tract, is 

required for successful colonization of C. jejuni in host.   

 

A recent study demonstrated that CmeABC efflux system is subject to regulation 

by CmeR, a transcriptional repressor encoded by a gene immediately upstream of 

cmeABC operon (Lin et al., 2005a).  CmeR represses the transcription of CmeABC by 

directly binding to the promoter region of the CmeABC operon.  Mutations either in 

CmeR or in the inverted repeat impedes the repression and leads to overexpression of 

CmeABC in Campylobacter (Lin et al., 2005a).  In addition to mutation-based 

mechanisms that resulted in sustained overexpression of CmeABC efflux pump as 

described above, CmeABC efflux pump can be conditionally induced by bile salts, a 
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group antimicrobial agents naturally present in intestine (Lin et al., 2005b).  The 

induction is in a dose- and time-dependent manner and is mediated by the direct 

interaction of bile salts with repressor CmeR.  Since CmeABC is essential for bile 

resistance, the inducible expression of cmeABC by bile salts provides a flexible 

mechanism for Campylobacter to adapt in the intestinal environments.  This notion is 

further supported by a recent study (Stintzi et al., 2005) in which the expression of 

cmeABC was found to be highly up-regulated in rabbit ileal loops as determined by whole 

genome microarray and real-time RT-PCR.  The elevated transcription of cmeABC in the 

rabbit ileal loops was likely the direct result of bile induction, although non-bile inducers 

for cmeABC may also exist in the gut.  Together, these findings highlight the significance 

of CmeABC in Campylobacter adaptation to the intestinal environment in hosts and 

CmeABC efflux system is an attractive therapeutic and vaccine target to prevent and 

control Campylobacter infections. 

 

Another RND type efflux system, CmeDEF, has also been identified recently in 

C. jejuni (Pumbwe et al., 2005; Akiba et al., 2006).  Mutation in CmeDEF only resulted 

in moderate decrease in the resistance to antibiotics (Pumbwe et al., 2005; Akiba et al., 

2006).  The cmeB/cmeF double mutation, not the single mutations, impaired cell viability 

in Campylobacter (Akiba et al., 2006).  These findings indicate that CmeABC is the 

predominant efflux pump in C. jejuni and CmeDEF interacts with CmeABC in conferring 

antimicrobial resistance and maintaining cell viability in C. jejuni.   
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Based on the complete genome sequence of C. jejuni NCTC 11168 (Parkhill et 

al., 2000) and comparative genomic analysis of MDR transporters (Paulsen et al., 2001), 

bioinformatics analysis revealed 11 additional putative drug efflux proteins in C. jejuni, 

including  four putative MFS efflux pumps,  four putative SMR type efflux pumps, one 

putative ABC type efflux pump, and two putative MATE (Lin et al., 2005c).  These 

eleven putative efflux systems have not been characterized in detail.  Recent study by Ge 

et al. (2005) showed that mutations in most of these efflux pumps did not affect 

susceptibility of C. jejuni to major antibiotics, suggesting that these putative efflux pumps 

are of minimal importance in mediating antibiotic resistance and that CmeABC is the 

main efflux system in Campylobacter species.     

 

Efflux Pump Inhibitor  

 

Efflux pump systems are increasingly recognized as a major and important 

mechanism contributing to antibiotic resistance, particularly multi-drug resistance (MDR) 

(Poole, 2005), which provide a strong rationale for industries to preserve and 

significantly potentiate the efficacy of antimicrobial agents by interefering with efflux 

pumps through small molecular inhibitors, also called efflux pump inhibitors (EPIs) 

(reviewed in (Lomovskaya and Watkins, 2001b; Lomovskaya and Bostian, 2006; Kaatz, 

2005)).  It has been proposed that inhibiting MDR efflux systems by application of EPIs 

is one approach to enhance drug accumulation inside the bacterial cell, thereby increasing 

bacterial susceptibility to antimicrobials (Poole, 2001b; Lomovskaya and Watkins, 

2001b). Since RND-type efflux pump is the most common and important MDR pump 
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implicated in clinically relevant resistance in gram-negative bacteria, the EPIs discussed 

in this session are focused on those targeting RND-type efflux pumps.  The information 

regarding the EPIs inhibiting other types of efflux pumps can be found in recent reviews 

(Lomovskaya and Watkins, 2001; Kaatz, 2005).  

 

  With the development of high-throughput screening system in the late 1990s, 

Microcide and Daiichi Pharmaceuticals Co. identified the first EPI, MC-207,110 (Phe-

Arg β-naphthyl-amide dihydrochloride), that could effectively inhibit RND type efflux 

pumps in P. aeruginosa (Lomovskaya et al., 2001a).  This compound was subjected to 

several growth assays, using Pseudomonas species, and was determined to be effective at 

inhibiting the function of four clinically relevant RND type efflux pumps within those 

species.  Interestingly, there was a difference in the strength of the inhibitory effect of 

EPI, had depending on the substrate. This information supports the idea that different 

antimicrobials have different binding sites on the efflux pump (Lomovskaya et al., 

2001a).  Further testing found that MC-207,110 was itself effluxed out of cells, indicating 

that there is definitely an interaction between the efflux pump and MC-207,110 

(Lomovskaya et al., 2001a).  MC-207,110 appears to be a much better substrate of efflux 

pumps than other antimicrobials and in a given instance, MC-207,110 would be 

preferentially effluxed before other substrates, thus allowing antimicrobials more time to 

exert their bactericidal effect (Lomovskaya et al., 2001a).  In addition to the effect of 

increasing the susceptibility to clinical antibiotics in wild-type strains of P. aeruginosa, 

EPI MC-207,110 was also shown to reverse acquired resistance back to susceptible 

phenotypes and decrease the frequency of emergence of antibiotic resistant strains 
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(Lomovskaya et al., 2001a).  Other studies showed that MC-207,110 is also effective 

against a variety of Gram-negative bacteria, including E. coli (Saenz et al., 2004),  

Enterobacter aerogenes (Chollet et al., 2004), Klebsiella pneumoniae (Hasdemir et al., 

2004), and Campylobacter (Mamelli et al., 2003).  Together, these findings indicate that 

MC-207,110 is very effective against RND-type efflux pumps, and is a promising agent 

in combating MDR in Gram-negative bacteria.  

 

Although there are a number of beneficial consequences of inhibition of efflux 

pumps against MDR resistance, development of clinically useful EPIs is still in the early 

stage (Lomovskaya and Bostian, 2006; Kaatz, 2005).  Similar to all infectious disease 

drug development, development of a promising EPI, such as MC-207,110, into a 

clinically useful therapeutic agent must address key issues, such as stability, 

bioavailability, production cost, etc. (Lomovskaya and Watkins, 2001; Lomovskaya and 

Bostian, 2006; Kaatz, 2005).  Mpex Pharmaceuticals, Inc. recently announced a Phase Ib 

clinical trial to study an aerosol EPI candidate in Cystic Fibrosis patients, which is the 

first time that a bacterial efflux pump inhibitor has been evaluated in humans for 

controlling drug resistance (http://www.mpexbio.com/). 

 

Campylobacter jejuni Vaccine Development 

 

 Despite growing need for new antibiotics owing to the inevitable development of 

drug resistance in bacteria,  pharmaceutical companies have been phasing out of the 

antibiotic discovery field recently (Projan, 2003; Walsh, 2003).  Therefore, in addition to 
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searching  potent EPIs for combination therapy as discussed above, development of other 

intervention strategies, such as vaccination, to prevent and control Campylobacter 

infections is also urgently needed.  Host immunity plays an important role in anti-

Campylobacter infection in humans and animals. C. jejuni specific serum IgG, IgA, and 

IgM, and mucosal IgG, IgA were rapidly increased after oral infection with C. jejuni 

(Baqar et al., 2001; Wallis, 1994; Cawthraw et al., 1994).  Among the different classes of 

immunoglobulins, anti-Campylobacter intestinal or serum IgA is a major factor 

contributing to the intestinal mucosal resistance to Campylobacter colonization (Wallis, 

1994; Burr et al., 1988).  Maternal IgA from human breast milk showed protective 

immunity against enteric Campylobacter spp. (Renom et al., 1992). In a volunteer study, 

re-challenge of previously infected volunteers could not reproduce the disease via 

ingestion of C. jejuni 81-176, suggesting that immunity can be induced to protect 

Campylobacter infections in humans (Black et al., 1988).  Laboratory challenge 

experiments indicated that anti-Campylobacter maternal antibodies partly contribute to 

the lack of Campylobacter infection in young broiler chickens in natural environments in 

the first two weeks (Sahin et al., 2001; Sahin et al., 2003).  These findings strongly 

support the feasibility of development of immunization-based approaches to control 

Campylobacter infections. 

 

There is no vaccine available to date to control Campylobacter infections.  The 

following three approaches have been explored for developing effective and safe C. 

jejuni vaccine: 1) Live attenuated vaccines.  Since challenge with wild-type C. jejuni 

strain produced solid protective immunity in volunteers (Wallis, 1994), it is likely that 
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live attenuated vaccine can confer protective effect.  However, the paucity of information 

on the pathogenesis of the organism complicates this strategy.  On the other hand, some 

C. jejuni strains that exhibit mimicry of gangliosides in their lipooligosaccharides are 

associated with development of Guillain-Barre Syndrome, which makes live vaccine 

potentially unsafe.  C. jejuni strain 81-176 was proposed as a safe candidate for vaccine 

design because of absence of persistent antiganglioside antibodies after experimental 

infection with the strain (Prendergast et al., 2004; Scott and Tribble, 2000).  2) Killed 

whole-cell vaccines.  This type of vaccines could induce high protective immunity 

without serious toxicity to the hosts.  Vaccination of killed C. jejuni whole cell enhanced 

the mucosal immune responses in human and chickens (Baqar et al., 1995; Baqar et al., 

1995; Rice et al., 1997; Widders et al., 1996; Prendergast et al., 2004) and partly reduced 

colonization of C. jejuni (Widders et al., 1996; Baqar et al., 1995).  3) Subunit vaccine. 

Subunit vaccine would have significantly less risk of post-vaccination sequelae than a 

live attenuated or killed vaccine.  However, few studies have been conducted to 

characterize the immunological properties of protective antigens in C. jejuni, primarily 

due to a lack of understanding of pathogenesis mechanisms and the antigenic complexity 

of Campylobacter.  Motility-mediating flagellum (Fla) is an immunodominant antigen 

and is protective against C. jejuni infection in animal models (Guerry, 1997; Morooka et 

al., 1985; Nachamkin et al., 1993; Pavlovskis et al., 1991; Wassenaar et al., 1993).  Fla is 

modified by glycosylation and undergoes both phase and antigenic variation, which 

complicates the use of Fla for vaccination (Caldwell et al., 1985; Logan et al., 1989; 

Szymanski et al., 1999; Doig et al., 1996).  However, a truncated recombinant FlaA 

subunit vaccine showed protection in an animal model (Lee et al., 1999).  Oral 
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immunization of chickens with CjaA that was expressed in a carrier strain elicited 

specific immune response associated with protection against challenge with wild-type C. 

jejuni (Wyszynska et al., 2004).  However, the function of CjaA is still not clear.  These 

findings suggest that subunit vaccine may be a safe and feasible approach for 

immunization against Campylobacter infections.     
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2.  INTRODUCTION 

 

Campylobacter jejuni is the leading bacterial cause of human enteritis in many 

industrialized countries (Slutsker et al., 1998; Friedman et al., 2000).  The estimated 

cases of campylobacteriosis in the United States are more than 2 million per year (Mead 

et al., 1999).  The medical costs and productivity losses resulting from C. jejuni infection 

are estimated at 1.5 to 8.0 billion dollars each year in the United States (Buzby et al., 

1997; Buzby and Roberts, 1997).  Campylobacter infections in humans vary from mild 

diarrhea to severe cramping and abdominal pain (Skirrow and Blaser, 2000).  This 

pathogenic organism is also associated with Guillain-Bare syndrome, an auto immune 

disease that may lead to respiratory muscle compromise and death (Nachamkin et al., 

1998).  The majority of human C. jejuni infections are epidemiologically linked to 

ingestion of contaminated poultry meat (Friedman et al., 2000; Tauxe, 2002), and the 

infective dose can be as low as 5-800 organisms (Black et al., 1988; Mentzing, 1981).  In 

parallel to its increased prevalence, C. jejuni has become increasingly resistant to 

antibiotics including macrolides and fluoroquinolones, the drugs of choice for treating 

human campylobacteriosis, thus greatly compromising the effectiveness of antibiotic 

treatments and posing a serious threat to public health (Engberg et al., 2001; Taylor and 

Tracz, 2005).  Therefore, development of effective strategies to prevent or eliminate 

Campylobacter infections is urgently needed. To achieve this goal, it is essential to study 

the mechanisms contributing to antibiotic resistance in Campylobacter and, on the other 

hand, to develop an understanding of host-pathogen interaction, such as the mechanisms 

utilized by Campylobacter to adapt in the intestinal environment in the presence of 
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various antimicrobial agents (e.g. bile salts).  Understanding the antibiotic resistance 

mechanisms and the in vivo adaptation mechanisms may facilitate the development of 

effective means to prevent and control Campylobacter infections in humans and animal 

reservoirs.    

 

As general and important mechanisms for antimicrobial resistance, multidrug 

efflux systems (often named MDR pumps) contribute significantly to the intrinsic and 

acquired resistance to antibiotics in bacterial organisms (Poole, 2001a; Putman et al., 

2000).  In addition to being key players in antibiotic resistance, MDR pumps also 

facilitate bacterial adaptation to deleterious environments where toxic compounds or 

metabolites are present.  Recently, a Campylobacter multidrug efflux pump (CmeABC) 

contributing to antimicrobial resistance was characterized (Lin et al., 2002, 2003, 

2005a,b; Luo et al., 2003; Pumbwe and Piddock, 2002).  The CmeABC efflux system is 

composed of three essential units, including an outer membrane protein (CmeC), an inner 

membrane drug transporter (CmeB) and a periplasmic fusion protein (CmeA).  These 

three proteins are encoded by a three-gene operon (cmeABC) and function together to 

form a membrane channel that extrudes toxic substrates directly out of Campylobacter 

cells (Lin et al.,  2002).  CmeABC contributes significantly to the intrinsic and acquired 

resistance of Campylobacter to structurally diverse antimicrobials (Lin et al., 2002; Luo 

et al., 2003; Pumbwe and Piddock, 2002).  In addition, CmeABC plays a key role in bile 

resistance and is essential for Campylobacter growth in bile-containing media and 

colonization in animal intestinal tract (Lin et al., 2003).  These findings have defined the 

importance of CmeABC in antimicrobial resistance and pathophysiology of 
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Campylobacter.  Notably, the CmeABC efflux pump can be dramatically induced by bile 

salts, a group of antimicrobial agents naturally present in intestine (Lin et al., 2005b).  

This notion is further supported by a recent study by Stintzi et al (2005), in which the 

expression of cmeABC was found to be highly up-regulated in rabbit ileal loops as 

determined by whole genome microarray and real-time RT-PCR. Together, these findings 

highlight the significance of CmeABC in antibiotic resistance and in Campylobacter 

adaptation to the intestinal environment in hosts.  Thus, CmeABC efflux system is an 

attractive target for the development of intervention strategies against Campylobacter 

infections in humans and animal reservoirs. 

 

It has been proposed that inhibition of MDR efflux systems by efflux pump 

inhibitor (EPI) is a novel approach to enhance drug accumulation inside the bacterial cell, 

thereby increasing bacterial susceptibility to antimicrobials (Ryan et al., 2001; 

Lomovskaya and Watkins, 2001b).  Recently, promising EPIs targeting the inner 

membrane drug transporter of MDR efflux pumps have been discovered and 

demonstrated to potentiate the activity of antimicrobial agents against a range of Gram-

negative bacteria (Lomovskaya et al., 2001a).  The presence of such inhibitors also 

resulted in a decreased frequency of emergence of fluoroquinolone resistant mutants 

(Lomovskaya et al., 2001a).  Based on the unique features of CmeABC efflux pump as 

described above, we speculate that inhibitors targeting the CmeABC efflux pump may 

not only control antibiotic resistance but also increase the susceptibility of C. jejuni to in 

vivo bile salts, consequently decreasing the colonization level of Campylobacter the in 

host.  Such pump inhibitors could be directly used as novel antimicrobials for therapeutic 
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intervention of Campylobacter infection.  The outer membrane component ,CmeC, is 

essential for the function of CmeABC, immunogenic and inducible in vivo (Lin et al., 

2003; Lin et al., 2005b), it is likely CmeC antibodies will work similarly to EPI to inhibit 

the functions of CmeABC pump in C. jejuni and provide immunity by targeting CmeC, 

which may provide an alternative way to fight Campylobacter infections.   To test our 

hypothesis and achieve the goal of developing CmeABC-based intervention strategies 

against Campylobacter, the following objectives were pursued in this study: 

1) Determine the inhibitory effect of an EPI on the function of CmeABC efflux 

pump and antibiotic resistance in Campylobacter.  

2) Examine the effect of inhibition of CmeABC pump by an EPI on the 

susceptibility of Campylobacter to bile salts. 

3) Evaluate the in vivo efficacy of EPIs on the colonization of Campylobacter in 

the host using chicken model system. 

4) Determine the effect of anti-CmeC antibodies on the susceptibility of C. jejuni 

to bile salts. 
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3.  MATERIALS AND METHODS 

 

Bacterial Strains and Culture Conditions 

 

The key Campylobacter jejuni strains used in this study are listed in Table 1 (all 

tables and figures are located in the appendix).  Other Campylobacter clinical isolates 

tested in this study are described in Table 2.  Both C. jejuni 81-176 (a human isolate) and 

S3B (a chicken isolate) have been used for the characterization of CmeABC efflux 

system in the previous studies (Lin et.al., 2002, 2003, 2005a,b; Luo et.al., 2003, 2005).  

All strains were routinely grown in Mueller-Hinton (MH) broth or agar at 42° C under 

microaerophilic conditions which were generated using a Campypak gas pack (Oxoid) in 

an enclosed jar.  When needed, MH media was supplemented with 30 µg/ml of 

kanamycin, or appropriate concentrations of ciprofloxacin or erythromycin.  All media 

were purchased from Difco.  

 

Antimicrobial Stock Preparation 

 

Antimicrobial stocks were prepared by completely dissolving specific 

antimicrobial (in powder form) in appropriate solvent.  Specifically, tetracycline (10 

mg/ml), ampicillin (50 mg/ml), ciprofloxacin (10 mg/ml), cefotaxime (25 mg/ml), 

sodium dodecyl sulfate (50 mg/ml), nalidixic acid (100 mg/ml), novobiocin (50 mg/ml), 

fusidic acid (50 mg/ml), cetylpyridinium chloride (20 mg/ml) and trisodium phosphate 

(10 mg/ml) were solublized in deionized distilled H2O followed by sterilization through 
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membrane filtration (0.22 µm filter).  Norfloxacin (25 mg/ml) was solublized in acetic 

acid while rifampin (25 mg/ml) and erythromycin (25 mg/ml) were dissolved in dimethyl 

sulfoxide (DMSO) and ethanol, respectively.  The above stock solutions were then 

aliquoted into sterile 2 ml tubes and stored in a -20ºC freezer.   

 

Bile salts including cholic acid (32 mg/ml), taurocholic acid (64 mg/ml), 

chenodeoxy choic acid (32 mg/ml) and glycocholic acid (32 mg/ml) were freshly 

prepared by dissolving the bile salts in MH broth.  The solutions were sterilized through 

membrane filtration (0.22 µm filter) and used immediately.  All bile salts used in this 

study are sodium salts, and their pH is approximately 7.0 after solubilization in MH broth 

for susceptibility and growth assays. 

 

The antibiotics and other antimicrobials used in this study were purchased from 

Sigma Chemical Co. (nalidixic acid, norfloxacin, erythromycin, cefotaxime, rifampicin, 

ampicillin, tetracycline, cholic acid, chenodeoxycholic acid, taurocholic acid, glycocholic 

acid, cetylpyridinium chloride, trisodium phosphate), ICN Biomedicals Inc 

(ciprofloxacin), and Bio-Rad (sodium dodecyl sulfate, ethidum bromide). 

 

Construction of CmeB Isogenic Mutants 

 

C. jejuni 81-176 CmeB isogenic mutant was originally created using EZ::TN 

<KAN-2> Tnp Transposome and was used in previous studies (Lin et al., 2002, 2003, 

2005 a, b). The cmeB insertional mutation in 81-176 was introduced to S3B by standard 
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biphasic natural transformation (Wang and Taylor, 1990) to create JL 141 (Table 1).  To 

perform natural transformation, genomic DNA was extracted from 9B6 using a Wizard 

Genomic Purification Kit (Promega).  Wild-type strain S3B cells grown overnight on MH 

plates were harvested with MH broth and adjusted to the approximate concentration of 3 

x 109 CFU ml-1 (corresponding to OD600 = 0.5).  0.5 ml of S3B cells were then added to 

15 ml polypropylene tubes containing 1 ml MH agar and the tubes were incubated 3 h at 

42oC under microaerophilic conditions. Following incubation, 1µl of 9B6 genomic DNA 

(~ 0.2 µg) was mixed with cells by pipetting up and down.  Following another 3 h of 

incubation under microaerophiilic conditions, cells were plated on MH plates with 

30µg/ml of kanamycin and the plates were incubated at 42° C under microaerophilic 

conditions for two days.  A single KanR colony was selected, and the insertional mutation 

in cmeB in this isolate was confirmed by PCR using a pair of cmeB specific primers ES5 

and ERP-2 as described below.  Further quick phenotypic confirmation for cmeB 

mutation was performed by disk diffusion method.  Briefly, wild-type S3B and its 

putative isogenic cmeB mutant cells were spread onto MH agar plates.  A sterile disk (6 

mm wide) was placed in the center and 10µl of 5% cholic acid was placed on disk.  Plates 

were incubated at 42° C under microaerophilic conditions for two days and the inhibitory 

zones were recorded.  

 

Polymerase Chain Reaction (PCR) 

 

PCR was performed in a volume of 50µl containing 200µM concentration of each 

of the deoxynucleoside triphosphates, 200nM concentrations of primers, 2.5mM MgSO4, 
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50ng of Campylobacter genomic DNA, and 5U of Taq DNA polymerase (Promega).  

Cycling conditions varied according to the estimated annealing temperatures of primers 

and the expected size of the product.  To confirm insertional mutation in cmeB gene in 

mutants, primers ES5 (5’- CGATCCCTATGGCTAAATT -3’) and ERP-2 (5’- 

AAAAATTCAAGTTGGTAGCGAAGT -3’) were designed from the sequence of 

cmeABC operon in C. jejuni 81-176 (Lin et al., 2002) and used in PCR with genomic 

DNA samples from wild-type strains or mutants.  To determine if macrolide resistance-

related point mutation occurred in domain V of the 23 S rRNA gene, a 508-bp specific 

fragment of 23S rDNA of resistant and sensitive strains were amplified by PCR using 

specific primers 23SF (5’- AAGAGGATGTATAGGGTGTGACG -3’) and 23SR (5’- 

AACGATTTCCAACCGTTCTG -3’) (Vacher et al., 2003).  A pair of specific primers 

MOMPF (5’- ATGAAACTAGTTAAACTTAGTTTA- 3’) and MOMPR (5’-

GAATTTGTAAAGAGCTTGAAG -3’) were used to amplify Campylobacter major 

outer membrane protein gene cmp that is a good target for molecular typing (Huang et al., 

2005).  In some PCR reactions, boiling samples were used as template.  Briefly, 1ml of 

C. jejuni cells are centrifuged for 4 minutes at 10,000 x g and the resulting pellet was re-

suspended in 100µl sterile deionized distilled water.  The tubes containing cell 

suspensions were then placed in boiling water for 10 minutes, followed by centrifugation 

at speed 10,000 x g for 4 minutes.  The supernatant was removed to clean 

microcentrifuge tube and used as a DNA template for PCR.   The PCR products were run 

along with 1kb DNA ladder (Promega) on a 1.0% agarose gel that was stained by 

ethidium bromide and visualized by using FluoChem 5500 digital imaging system (Alpha 

Innotech). 
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Sequence Analysis 

 

The amplified PCR products were purified using the QIAquick PCR Purification 

Kit (Qiagen) prior to sequencing. DNA sequencing was carried out using an automated 

DNA sequencer (model 377; Applied Biosystems).  Sequences were aligned with 

Pairwise BLAST at the NCBI website (http://www.ncbi.nih.gov/BLAST/).   

 

Efflux Pump Inhibitors (EPIs) 

 

Efflux pump inhibitor MC-207,110 (Phe-Arg β-naphthyl-amide dihydrochloride) 

(Figure 1) is commercially available from Sigma (catalog no. P4157).  MC-207,110 is the 

first effective EPI targeting RND efflux pumps and was identified by screening a large 

synthetic compounds and natural product libraries (Lomovskaya et al., 2001a).  Stock 

solutions were made using deionized distilled water (dd H2O) to final concentration of 25 

mg/ml followed by sterilization through membrane filtration.  In addition to MC-207,110, 

MC-04,124 (Figure 1) was also used in this study. MC-04,124 is an analogue of MC-

207,110 and is less toxic in vivo (Renau et al., 2003). The MC-04,124 was kindly 

provided by Olga Lomovskaya (MPex Pharmaceuticals, CA).  Stock solutions of MC-

04,124 were made at a concentration of 20 mg/ml using dd H2O and sterilized by 

membrane filtration.   
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Susceptibility Tests 

 

Minimum inhibitory concentration (MIC) tests were performed to determine the 

susceptibility of Campylobacter to a variety of antimicrobials with or without EPI MC-

207,110.  Standard microtiter broth dilution method was used to determine MICs as 

described by Jorgensen and Turnidge (2003) with slight modifications.  Briefly, 

antimicrobials stock solutions were completely thawed, vigorously vortexed and diluted 

in MH broth (with or without 10 µg/ml of EPI MC-207,110) to initial testing 

concentrations (the highest testing concentration).  Then, 240µl of diluted antimicrobial 

solution was placed into the wells in the first lane of a 96 well plate (Nunc) with 

duplicate for each antimicrobial.  120µl of plain broth was put into the remaining wells 

using an 8-channel pipette.  Antimicrobial solutions in the first lane were serially diluted 

using a 2- fold dilution scheme in which 120µl from the wells in the first lane was 

transferred into the wells in the second land and mixed by pipetting up and down five 

times.  This procedure was repeated for the rest of the wells with the exception of the 

wells in the last lane, which were left free of antimicrobials as a positive control.  To 

prepare inoculum for MIC test, C. jejuni was grown in MH broth to late-log phase (~ 

8x108 cfu/ml; grown at 42°C for 24-36 h under microaerophilic conditions).  The cultures 

were then 20-fold diluted in MH broth to make inoculum with appropriate concentration 

of 4x107 cfu/ml.  5 µl of the above inoculum was transferred to each well in 96-well plate 

using a 12-channel pipette, resulting in a final inoculum of 1.6 x 105 cfu/well.  Microtiter 

plates were incubated for 2 days under microaerophilic conditions at 42° C. The MIC was 
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determined by the lowest concentration of antimicrobial agent that completely inhibited 

the growth of Campylobacter. 

 

Checkerboard Titration Assay 

 

To determine if the effect of EPI MC-207,110 on increasing the susceptibility of 

C. jejuni to antimicrobials is dose-dependent, checkerboard assays were performed using 

96-well plates as described previously (Lomovskaya, et al., 2001a).  Representative 

antimicrobials erythromycin and cholic acid were tested at 11 concentrations ranging 

from 0.004 to 4µg/ml and from 0.03 to 30 mg/ml, respectively.  The EPI MC-207,110 

was tested at 7 concentrations ranging from 0.25 to16 µg/ml. Briefly, in one 96-well plate 

specific antimicrobial was serially diluted from its starting concentration across the rows 

as described above for standard MIC tests.  The last column was left free of antimicrobial 

and the final volume of all wells was 50µl.  A second plate was prepared for EPI MC-

207,110 which was serially diluted in MH broth from its starting concentration down 

each column.  The last row was left free of the EPI and the final volume of all wells was 

50µl.  A multi-channel pipet was used to transfer the 50µl in each well of the EPI plate 

into the corresponding well in the antimicrobial plate.  The final volume in each well was 

100µl.  The plate was inoculated with one C. jejuni strain (81-176, S3B, 9B6, or JL141) 

as described above in Susceptibility Test session.  Microtiter plates were incubated for 2 

days under microaerophilic conditions at 42° C. Bacterial growth in each well was 

recorded and MICs were determined. 
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In vitro Selection of Fluoroquinolone(FQ)- and Erythromycin(Ery)-Resistant 

Mutants 

 

Two different in vitro selection experiments were conducted to address different 

objectives in this study.  In the first experiment, FQ-resistant and Ery-resistant mutants 

were obtained in vitro and were used to determine if EPI MC-207, 110 can reverse 

acquired resistance in these mutants.  Briefly, 100µl of wild-type 81-176 or S3B cells 

were plated on MH plates and grown overnight at 42° C under microaerophilic 

conditions.  The fresh cells were then harvested from plates using fresh MH broth.  Cell 

suspensions were spread on MH agar plates containing antibiotic Ery (8 µg/ml) or 

ciprofloxacin (4 µg/ml).  Following 2-day incubation under microaerophilic conditions at 

42° C, single FQ-resistant or Ery-resistant colony on selective plates were selected and 

inoculated in MH broth.  The selected antibiotic resistant mutants (detailed in Table 1) 

were used for MIC test in MH broth with or whithout EPI MC-207,110.  In addition, 

cmeB insertional mutation was also transferred to JL157-160 strains by natural 

transformation as detailed above, resulting in strains JL161-164 (Table 1). These isogenic 

cmeB mutants were also used for testing MIC of Ery in the presence or absence of EPI 

MC-207,110.   

 

In the second experiment, the effect of EPI MC-207,110 on the frequency of in 

vitro emergence of Ery-resistant and FQ-resistant mutants in C. jejuni was determined.  

The cells were prepared as described above. The cells were then centrifuged for 4 

minutes at 10,000 rpm and pellets were resuspended in small volume of fresh MH broth.  
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100 µl of the highly concentrated C. jejuni suspension was plated onto MH plates 

containing specific antibiotic (4 µg/ml of Ery or 4 µg/ml of ciprofloxacin) and onto MH 

plates containing both specific antibiotic and MC-207,110 (10 µg/ml). In the mean time, 

the C. jejuni suspensions were serially diluted in MH broth (1:10) and plated on plain 

MH plates to determine the concentration of the C. jejuni suspension.  After a 2-day 

incubation at 42°C under microaerophilic conditions, colonies on each plate were 

enumerated.  Frequencies of emergence of resistant mutants were determined as ratios 

between the number of colonies that grew on MH plates containing specific antibiotic 

(with or without MC-207,110; expressed as numbers of CFU per ml) to the number of 

colonies showing on MH plates without antibiotics or MC-207110.   

 

Effect of EPIs on the Colonization of C. jejuni in Chickens 

 

Two animal challenge experiments were conducted in this study: A) To evaluate 

the effect of treatment of EPI (MC-207,110 or MC-004,124) on the colonization of C. 

jejuni in chickens; and B) To evaluate the effect of multiple dosing and treatment of MC-

207,110 on the colonization of C. jejuni in chickens.  The experimental design is detailed 

in Table 3.  C. jejuni strain S3B was chosen for challenge studies based on following 

reasons.  First, C. jejuni strain S3B was originally isolated from chickens in our 

laboratory. This strain has been fully characterized in our laboratory by molecular 

methods and its genetic fingerprints are fully known, facilitating the differentiation of this 

strain from other isolates (Huang et al., 2005; Luo et al., 2003, 2005; Zhang et al., 2000).  

Second, S3B colonizes chickens effectively and has been used in our previous chicken 
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studies (Luo et al., 2003, 2005; Sahin et al., 2003).  In addition, in vitro analysis has 

demonstrated that EPI MC-207,110 dramatically increased susceptibility of S3B to bile 

salts.  These features of S3B have made it an ideal strain for the challenge experiments.  

For both trials, one-day-old broiler chickens were obtained from Hubbard Hatchery, a 

commercial hatchery company in Pikeville, Tennessee.  Prior to use, these chickens were 

screened for Campylobacter by culturing cloacal swabs, which were plated onto MH agar 

plates containing Campylobacter-specific growth supplements (SR084E and SR117E; 

Oxoid). All of the birds were negative for Campylobacter.  For both experiments, 5-day-

old chickens were weighed (~62 g/chick) and all chicks were inoculated via oral gavage 

one time with C. jejuni S3B at dose of 105 CFU/chick.  In the first experiment, specific 

EPI were administered into each chick at appropriate dose 30 min after chickens were 

inoculated with C. jejuni S3B (Table 3).  In the second experiment, a wider dose range 

was used for MC-207,110 (3 mg/kg – 75 mg/kg) and an additional two EPI treatments 

were given at 24 h and 48 h post-inoculation.  Each group was maintained in a sanitized 

wire-floored cage and provided with unlimited access to feed and water.  Cloacal swabs 

were taken at days 2, 4, 7 and 9 days post-inoculation.  Swabs were placed in 1ml MH 

broth, briefly vortexed and 100µl suspensions were spread onto MH plates containing 

Campylobacter-specific selective supplements.  The plates were then incubated for two 

days at 42° C under microaerophilic conditions and the number of colonies was counted. 

Some of selected colonies were tested by PCR to ensure that the output Campylobacter 

populations were the same as the inoculum and that there was no contamination of the 

chickens by other sources.  The percentage of chickens colonized by C. jejuni and the 

shedding level of Campylobacter in chickens colonized by C. jejuni after inoculation and 
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treatment were determined.  Chi square analysis (SAS 9.1) was used to measure the 

significant differences in the percentage of colonized chickens at each time point between 

groups.   One-way analysis of variance followed by a least-significant difference was 

used to calculate the significant differences in shedding level (log transformed). All 

animal studies were conducted under IACUC standard protocols (University of 

Tennessee IACUC protocol number: 1428). 

 

Preparation of Chicken Intestinal Extracts 

 

Chicken intestinal extracts were prepared from three different sections of the 

intestine (duodenum, jejunum and cecum) as described previously (Lin et al., 2003).  Six 

21-day-old chickens were used for the preparation of chicken intestinal extracts.  All 

birds tested negative for Campylobacter by culturing cloacal swabs.  The intestinal 

contents from each section were pooled from six chickens.  The same volume of MH 

broth was thoroughly mixed with each pool of chicken intestinal extracts, followed by 

centrifugation at 10,000 x g at 4 oC for 30 min.  The supernatant was carefully pipetted 

out and passed through a series of membrane filtrations for sterilization (prefilter, 1.2µm, 

0.45µm, and 0.22 µm; Millipore Co.).  The sterilized extracts were then aliquoted into 2 

ml sterile tubes and stored in -20° freezer.   
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Effect of CmeC Antibodies on the Susceptibility of C. jejuni to Bile Salts 

 

 Polyclonal rabbit anti-CmeC serum directed against a portion of CmeC (aa 41 to 

248 of total 492 aa in length) was produced in a previous study (Lin et al., 2002). Prior to 

any assays, both rabbit control serum (pre-immune serum, negative for CmeC) and anti-

CmeC serum was incubated at 56 oC for 30 min to abolish complement activity. 

Susceptibilities of C. jejuni to bile salts in the presence of specific CmeC antibodies or 

control antibodies were performed in 96-well microtiter plates (Corning).  Prior to assays, 

C. jejuni 81-176 was grown for 16 hr at 42oC in MH broth containing sublethal 

concentration of bile salt taurochloric acid (2mg/ml) to induce CmeC expression.  The 

cultures were then washed twice in MH and diluted to approximately 1 x 107 CFU/ml in 

MH broth.  For the susceptibility assay, the total volume in each well was 250 µl in 

which 25 µl of diluted culture and 25 µl specific serum (anti-CmeC serum or control 

serum) were inoculated in 200 µl of MH broth containing 4 µg/ml of cholic acid or 200 µl 

of chicken intestinal extract.  After 6 hr of incubation at 42oC under microaerophilic 

condition, 20 µl of bacterial culture were taken and serially diluted in ice-cold MH broth 

and plated onto MH agar plates. The number of colony forming units (CFU) was 

enumerated after a 2-day incubation under microaerophilic conditions at 42oC.  All 

assays were done in triplicate. The CFU mean comparisons between treatment groups 

were analyzed using Student T test (SAS 9.1). 

  

As a long term effort to quantitatively evaluate specific anti-CmeC IgG on the 

susceptibility of C. jejuni to bile salts, the anti-CmeC IgG were purified from the rabbit 
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anti-serum by protein G affinity chromatography using ImmunoPure (G) IgG Purification 

Kit (Pierce).  SDS-PAGE with 12% (wt/vol) polyacrylamide separating gel was used to 

determine the purity and molecular mass of purified IgG.  The IgG concentration was 

measured by Bicinchonic Acid Protein Assay (Pierce).  
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4.  RESULTS 

 

EPI MC-207,110 Increases the Susceptibility of C.  jejuni to Various Antibiotics   

 

As shown in Table 4, the presence of EPI MC-207,110 significantly reduced 

MICs of different antimicrobial compounds.  Of most interest, the MIC of erythromycin, 

the current antibiotic of choice for treating Campylobacter infections, was dramatically 

decreased 32-fold in 81-176 and 64-fold in S3B strain in the presence of the EPI.  When 

C. jejuni 81-176 was grown in MH broth with MC-207, 110, the MICs of 

fluoroquinolones were decreased 2-fold (ciprofloxacin) and 4-fold (nalidixic acid); the 

MICs of β-lactams (cefotaxime and ampicillin) were decreased 2-fold; the MICs of 

rifampin, tetracycline, ethidium bromide, novobiocin and fusidic acid were decreased 

1024-fold, 2-fold, 4-fold, 128-fold and 64-fold, respectively (Table 4).  Similar 

significant MIC reductions were also observed for C. jejuni S3B grown in MH broth 

containing MC-207,110 (Table 4).  Interestingly, presence of MC-207,110  also 

significantly increased susceptibility  of both C. jejuni strains to cetylpyridinium chloride 

(8-fold MIC reduction), a recently approved food antimicrobial used by the poultry 

industry to reduce Campylobacter spp. during processing (Oyarzabal, 2005). However, 

MC-207,110 had only moderate or no effect on the susceptibility of C. jejuni to other two 

commonly used food antimicrobials trisodium phosphate and sodium hypochlorite (Table 

4). 
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Effect of MC-207,110 on the Susceptibility of cmeABC Mutants to Various 

Antibiotics  

 

Isogenic cmeABC mutants were constructed for MIC test to determine if the 

effect of MC-207-110 is primarily mediated by CmeABC efflux pump. As shown in 

Figure 2A, we purified genomic DNA from 9B6 (lane 2), an isogenic cmeB mutant of 81-

176, for natural transformation.  The insertional mutation cmeB was successfully 

transferred to wild-type S3B strain, resulting in the putative cmeB mutant JL141 with 

kanamycin resistance.  PCR analysis using cmeB specific primers resulted in ~1.25 kb 

fragment for wild-type 81-176 while a larger size fragment (~3.0 kb) in 9B6 was 

generated, indicating cmeB gene was interrupted by transposon insertion in mutant 9B6 

(Figure 2A).  However, the cmeB specific primers did not result in visible bands for both 

S3B and JL 141 strains (Figure 2A, lanes 5 and 6), likely due to cmeB sequence 

variations between 81-176 and S3B.  Since cmeB mutant is hypersusceptible to bile salts 

(Lin et al., 2002, 2003), a disk diffusion assay was performed to confirm if JL 141 

contained the desired mutation in cmeB and corresponding phenotype change.  Following 

a 2-day incubation, no inhibition zone was observed for wild-type S3B (Figure 2B) while 

putative cmeB mutant JL 141 showed greatly increased sensitivity to cholic acid, as 

indicated by a distinct zone of inhibition (diameter of 29 mm) (Figure 2B).   

 

As shown in Table 5, EPI MC-207,110 still resulted in significant MIC reductions 

in both cmeB mutants for most antibiotics. However, for many antibiotics, the magnitude 

of MIC reduction is smaller than that in wild-type strains (Table 4).  For example, 
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presence of MC-207,110 in broth led to 128-fold and 512-fold reduction in the MIC of 

novobiocin in 81-176 and S3B, respectively (Table 4).  When cmeB was knocked out in 

81-176 and S3B, MC-207,110 still resulted significant reduction in the MIC of 

novobiocin (Table 5) but the magnitude of MIC reduction (4- fold) is much smaller than 

that in wild-type parent strains (128- and 512- fold). 

 

Effect of MC-207,110 on the Susceptibility of C. jejuni to Antibiotics is Dose-

Dependent   

 

To determine if the effect of EPI MC-207,110 on reducing MICs of antibiotics 

observed above was dose dependent, standard checkerboard assays were performed using 

clinically important erythromycin as a representative antibiotic.  As shown in Table 6, 8 

µg/ml of MC-207,110 led to the most significant reduction of MIC in C. jejuni 81-176 

(256-fold) and in S3B (64-fold) compared to the MICs tested in MH broth without the 

EPI.  With a decrease of MC-207,110 concentration in MH broth for MIC test, the MIC 

reduction also declined (Table 6).  However, as low as 0.25µg/ml of the EPI in MH broth 

still resulted in significant MIC reductions in most strains (Table 6). 

 

MC-207,110 Reversed Acquired Antibiotic Resistance in C. jejuni 

 

To determine if MC-207,110 reversed acquired antibiotic resistance, both Ery-

resistant and Cipro-resistant mutants were first selected in vitro using wild-type 

susceptible strains 81-176 and S3B. As shown in Table 7, presence of MC-207,110 not 
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only reduced MICs of Ery in wild-type strain 81-176 and S3B but also resulted in 

dramatic MIC reduction in all Ery-resistant mutants (JL154 to JL160) with reduction 

range from 16-fold to >64-fold.  In other words, in the presence MC-207,110, all Ery-

resistant phenotypes of mutant strains were reversed to susceptible phenotypes.  To 

determine if macrolide resistance-related point mutation also occurred in domain V of the 

23 S rRNA gene, a specific 508-bp fragment was amplified from each Ery-resistant 

mutant and used for sequencing (Figure 3A).  Interestingly, sequence analysis showed 

that none of the mutants had expected A2230G point mutation, which agrees with recent 

finding that spontaneous Ery-resistant C. coli  had relatively low  MICs (32 to 64 µg/ml) 

and lacked the A2230G mutation in the 23S rRNA gene (Kim et al, 2006). 

 

The cmeB mutation was also introduced to Ery-resistant mutants JL157 to JL160, 

generating isogenic cmeB mutants (JL161-JL164) for evaluating the role of CmeABC 

pump in acquired Ery-resistance (Table 7).  As shown in Table 7, an insertional mutation 

in cmeB (JL161-164) resulted in significantly lower MIC of Ery in MH broth compared 

to their parent strains (Jl157-160).  Supplementation of MC-207,110 in MH broth led to 

further MIC reductions (4-8 folds) in these cmeB mutants.   

 

 MC-207,110 also affected the MIC of Cipro in Cipro-resistant mutants (Table 8).  

However, unlike its effect on Ery-resistant mutants, MC-207,110 only reduced the MIC 

of Cipro in the mutants with high resistance to Cipro (JL152 and JL153) but had no effect 

on the mutants with intermediate resistance (JL150 and JL151).  
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MC-207,110 Decreased the Frequency of Emergence of Ery-Resistant C. jejuni 

 

To determine if the presence of MC-207,110 could also reduce the frequency of 

emergence of antibiotic resistance in C. jejuni, emergence tests were performed on MH 

plates containing specific antibiotic and MC-207,110 using wild-type susceptible strain 

81-176 and S3B.  When tests were performed with Ery alone, the frequency of 

emergence of Ery resistance was approximately 10-8 level in both strains (Table 9).  

However, when plates were supplemented with 10 µg/ml of MC-207,110, no single Ery-

resistant colony emerged on the plates and the frequency was less than 1.6 X10-10 in 81-

176 and 5 X 10-11 in S3B (Table 9).  With respect to FQ, presence of MC-207,110 did not 

result in significantly decreased frequency of emergence of Cipro-resistant C. jejuni 

mutants.  The frequency of emergence of Cipro-resistant C. jejuni was approximately 2.1 

X10-8 in vitro.   

 

MC-207,110 Increased Susceptibilities of Various Clinical Campylobacter Isolates to 

Ery 

 

To determine if MC-207,110 not only increases the susceptibilities of clinical 

strain C. jejuni 81-176 and S3B but also reduces the MICs for other clinical isolates from 

various sources, MICs of Ery were measured on 57 clinical isolates of different origins 

(Table 2).  The EPI significantly increased the susceptibilities of all clinical isolates to 

Ery (Figure 4).  MIC reduction was as high as 512-fold (Figure 4).  The majority of the 

isolates displayed a 4- to 32- fold reduction in the MIC of Ery in the presence of EPI MC-
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207,110 (Figure 4).  Importantly, five isolates were highly resistant to Ery and displayed 

significant Ery MIC reductions ranging from 8- fold to 62- fold. 

 

EPI MC-207,110 Increases the Susceptibility of Campylobacter jejuni to Various Bile 

Salts 

   

As shown in Table 10, the MICs of detergent SDS and all four bile salts were 

dramatically decreased in the presence of the EPI.  The MIC reduction ranged from 16-

fold to 512-fold.  As expected, insertional mutation in cmeB drastically decreased MICs 

of bile salts and detergent in both mutants in MH broth (Table 11).  Although presence of 

MC-207,110 resulted in further MIC reduction for both the two cmeB mutants, the 

magnitude of MIC reduction for bile salts (2- to 32-fold) was much smaller than that 

observed for wild-type strains (Table 10 and Table 11).   The checkerboard titration assay 

also demonstrated the dose effect of MC-207,110 on increasing susceptibility of C. jejuni 

to the bile salt cholic acid (Table 12). 

 

We also determined the effect of another EPI MC-04,124 on the susceptibilities of 

C. jejuni to different antimicrobials including four bile salts.  The EPI MC-04,124 

resulted in comparable MIC reductions for all antimicrobials as those for MC-207,110 

(Table 4 and 10).  However, higher concentrations of MC-04,124 (50 µg/ml) was used in 

MIC test when compared to MC-207,110 (10 µg/ml), indicating in vitro activity of MC-

04,124 is not as potent as MC-207,110.   
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EPIs Reduced Colonization of C. jejuni in Chickens  

 

As shown in Figure 5, colonization levels of C. jejuni in EPI treatment groups 

were lower than that in the control group.  Specifically, the control group without EPI 

treatment had a 60% colonization rate 2 days post inoculation.  However, there was no 

colonization in any chicken in the group treated one time with low-dose of MC-207,110 

and high-dose of MC-04,124 at 2 days postinoculation (Figure 5).  EPI MC-04,124 

treatment doses also resulted in lower colonization levels compared to the control group 

(Figure 5).  As the study continued, the differences between treatment and control groups 

lessened (Figure 5), most likely due to horizontal transmission of C. jejuni among 

chickens within a group and the single administration of EPI at day 0.  Surprisingly, we 

observed a reversed dose effect for MC-207,110 in this experiment (Figure 5). To further 

define the dose effect of MC-207,110 in vivo and examine the effect of EPI 

administration regimen, we conducted another chicken experiment with modification of 

using three different EPI dose and administered EPI for three times.  The second chicken 

study (Figure 6A) also showed that MC-207,110 reduced the percentage of chickens 

colonization by C. jejuni S3B when compared to the control group (90%).  Similar to the 

finding in the first chicken study (Figure 5), the highest dose of MC-207,110 resulted in 

highest percentage of colonization among three EPI-treatment groups (Figure 6A). 

Despite MC-207,110 were administered for three consecutive days, inhibition of 

colonization of C. jejuni by MC-207,110  lessened throughout the study and by day 9 

postinoculation C. jejuni S3B colonized 80 – 90 % of chickens for all groups.  Shedding 
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levels of chickens colonized with Campylobacter were also evaluated and no significant 

difference was observed among four groups. 

  

  To confirm that the isolates recovered from the experimental chickens were 

derived from the inoculated S3B, the cmp gene encoding the major outer membrane 

protein was PCR amplified with representative Campylobacter isolates obtained from the 

chickens. The sequence data showed that the cmp sequences were identical to that of 

S3B, indicating that the output Campylobacter populations was the same as the inoculum 

and there was no contamination of chickens by other sources. 

 

Effect of Anti-CmeC on the Growth of C. jejuni 

 

To determine if the function of CmeABC can also be inhibited by immune 

intervention, the effect of anti-CmeC serum on the C. jejuni growth in bile-containing 

media was investigated.  As shown in Figure 7, compared to the growth in the presence 

of control serum, supplementation of anti-CmeC serum in MH broth containing sublethal 

concentrations of bile salt cholic acid resulted in moderate but significant growth 

reduction (~ 0.65 log unit), suggesting anti-CmeC antibodies specifically inhibit the 

function of CmeABC pump and increased susceptibility of C. jejuni to bile salts.   

Despite above difference resulting from CmeC antibodies, anti-CmeC serum did not led 

to significant growth reduction of C. jejuni in chicken intestinal extracts (data not 

shown). 
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Purification of Anti-CmeC IgG 

 

 To further define the role of anti-CmeC IgG on the function of CmeABC pump in 

the future, we initiated the purification of rabbit anti-CmeC IgG using protein G affinity 

chromatography. As shown in Figure 8, highly purified anti-CmeC IgG were successfully 

obtained using protein G affinity chromatography.  Most of the antibodies were eluted in 

the fourth fraction (lane 6 in Figure 8B) with the highest absorbance (2.22) at 280 nm.  

Based on BCA assays, a total of ~10 mg of IgG were purified from 2.5 ml of crude rabbit 

anti-CmeC serum. 
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5.  DISCUSSION 

 

The results of this study clearly demonstrate the feasibility of developing a 

CmeABC efflux pump- based intervention strategy against Campylobacter.  This 

conclusion is supported by the following evidence.  First, EPI MC-207,110 greatly 

potentiated the efficacy of various antibiotics against C. jejuni, primarily mediated by 

inhibition of CmeABC efflux pump.  Specifically, MC-207,110 dramatically increased 

the susceptibilities of C. jejuni to structurally unrelated antibiotics including the clinically 

important macrolide Ery (Table 4 and 5) in a dose-dependent manner (Table 6).  MC-

207,110 also effectively inhibited the CmeABC efflux pump in drug-resistant C. jejuni 

strains and significantly reversed acquired resistance (Table 7 and 8; Figure 4).  More 

importantly, presence of MC-207,110 drastically reduced the frequency of emergence of 

macrolide-resistant mutants in C. jejuni (Table 9).  Second, inhibition of the CmeABC 

efflux system by EPI MC-207,110 made C. jejuni strains hypersusceptible to bile salts, 

which can act as bactericidal antimicrobials in intestine (Tables 10 and 11), and 

consequently reduced C. jejuni colonization in the host, as shown by this experiment 

using a chicken challenge model system (Figure 5).  Finally, antibodies directed against 

partial region of outer membrane protein CmeC also displayed an inhibitory effect on the 

function of CmeABC pump and decreased the survival of C. jejuni in the presence of bile 

salts (Figure 7).  Together, these findings provide compelling evidence that inhibiting C. 

jejuni CmeABC efflux pump by EPIs or specific CmeC antibodies may be a novel 

approach to combat antibiotic resistance and prevent and control Campylobacter 

infection in humans and animal reservoirs.   
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EPI MC-207,110 has been demonstrated to be effective against a variety of Gram-

negative bacteria (Chollet et al., 2004; Hasdemir et al., 2004; Lomovskaya et al., 2001a ; 

Mamelli et al., 2003,2005; Saenz et al., 2004) since it was first discovered by 

Lomovskaya et al. (2001a).  Unlike those studies in which the efficacy of the EPI was 

only investigated with respect to very limited antimicrobials, our study comprehensively 

examined the effect of EPI MC-207,110 to a wide spectrum of structurally unrelated 

antimicrobials.  In conjunction with the use of genetic approaches for identified 

CmeABC efflux pump, findings from this study clearly indicated that inhibition of the 

CmeABC efflux system greatly increased susceptibility of C. jejuni to different 

antibiotics including a macrolide (erythromycin) and FQ, the major drug of choice for 

treating human campylobacteriosis.  Findings from this study also revealed two unique 

groups of antimicrobials that are also affected by EPI, which has never been reported in 

other bacteria.  The first group of antimicrobials is bile salts that are the substrate of 

CmeABC efflux pump and are naturally present in the intestine forming a barrier to limit 

enteric pathogen infections (Lin et al., 2003, 2005b).  The unique role of CmeABC in bile 

resistance and the potent effect of EPI MC-207,110 on increasing susceptibility of 

Campylobacter to bile salts in vitro and in vivo strongly suggest that EPI could be 

directly used as therapeutic intervention of Campylobacter infection.  The second group 

of novel antimicrobials consists of commercial food antimicrobials commonly used by 

the poultry industry to reduce Campylobacter spp. during processing (Oyarzabal, 2005).  

We observed that the presence of MC-207,110 significantly decreased the MIC of two 

food antimicrobials (Table 4), particularly for cetylpyridinium chloride, a recently 

approved food antimicrobial.  This finding suggests that EPI may be also used as a novel 
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agent in post-harvest food safety to potentiate commonly used food antimicrobials during 

processing.  However, EPI did not potentiate the efficacy of sodium hypochlorite (Table 

4), a commonly used antimicrobial in food processing.  The mode of action of specific 

food antimicrobials may determine its sensitivity to EPI.  For example, disruption of cell 

membrane is a suggested mechanism for cetylpyridinium chloride and trisodium 

phosphate (Oyarzabal, 2005) and notably, is also a mechanism for detergents and bile 

salts that are the substrates of CmeABC efflux pump (Lin et al., 2002, 2003, 2005b).   

 

Macrolides such as Ery are considered the antibiotic of choice for treating 

Campylobacter infections because FQs are losing effectiveness in clinical treatments due 

to the widespread resistance of Campylobacter to this class of antibiotics (Enberg et al., 

2001; Smith et al., 1999).  Unfortunately, Campylobacter resistance to Ery is also on the 

rise (Enberg et al., 2001).  Therefore, in this study we placed extensive efforts on 

determining the effect of EPI MC-207,110 on Ery-resistance in C. jejuni and our findings 

strongly suggest that EPI is a novel agent for fighting Ery resistance in C. jejuni.  We 

have demonstrated that inhibition of CmeABC efflux pump (i) decreased the level of 

intrinsic Ery resistance significantly, (ii) revered acquired Ery resistance, and (iii) 

resulted in a decreased frequency of emergence of C. jejuni mutants that are resistant to 

Ery.  A similar effect resulting from MC-207,110 was observed by Lomovskaya (2001a) 

for FQ-resistance in P. aeruginosa.  Although MC-207,110 has also been used to study 

Ery-resistance in Campylobacter by other groups recently (Gibreel et al., 2005; Mamelli 

et al., 2003, 2005), our study provided much more comprehensive information of the 

effect of MC-207,110 on the function of CmeABC efflux pump and on the development 
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of Ery-resistance in C. jejuni.  In particular, to test the effect of EPI on Ery resistance in 

Campylobacter isolates, we used standard broth dilution method instead of disk diffusion 

method in which EPI MC-207,110 was supplemented in agar plates in other reports 

(Gibreel et al., 2005; Mamelli et al., 2003, 2005).  Disk diffusion method is not a standard 

MIC test for Campylobacter and is suitable for providing qualitative results but not for a 

good quantitative result.  However, the broth dilution method is a more reliable reference 

method for susceptibility testing and provides better qualitative results than disk diffusion 

methods (Jorgensen and Turnidge, 2003).  Furthermore, to fully determine the interaction 

between EPI MC-207,110 and efflux pumps in all C. jejuni cells in culture, addition of 

EPI MC-207,110 in liquid MH broth medium in our study is a better assay system than 

the supplementation of the EPI in agar plates, as described by Gibreel et al.(2005) and 

Mamelli et al.(2003, 2005).  Because of these methodological differences, findings from 

our study demonstrated that presence of MC-207,110 greatly reduces the MIC of Ery in 

all Ery-sensitive and Ery-resistant Campylobacter strains, which is in contrast of recent 

observations that  the pattern of most Ery resistant C. jejuni isolates was not affected by 

MC-207,110 (Gibreel et al., 2005; Mamelli et al., 2005).  Together, our study 

demonstrated that EPI is an attractive antimicrobial agent to combat increasing antibiotic 

resistance in Campylobacter and significantly potentiates the efficacy of currently 

available antimicrobial agents.  The in vivo efficacy of EPI on antibiotic resistance (e.g. 

Ery-resistance) in Campylobacter needs to be investigated in the future.   

 

Previous studies indicated that CmeABC is a primary MDR efflux pump 

contributing to antibiotic resistance in C. jejuni ( Akiba et al., 2006; Ge et al., 2005; Lin 
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et al, 2005c).  According to whole genome analysis (Lin et al., 2005c), there are only two 

RND-type efflux pumps in C. jejuni: CmeABC and CmeDEF.  Recently, CmeDEF has 

been characterized and found to play a minor role in contributing resistance to various 

antimicrobials including Ery (Pumbwe et al., 2005; Akiba et al., 2006).  Notably, in this 

study, the EPI still resulted in further MIC reductions in isogenic cmeB mutants for most 

antimicrobials although the magnitude of MIC reductions was smaller (Table 5, 6, 11, 

12), which suggested that, in addition to CmeABC efflux system, other unknown efflux 

system(s) also contributed to Campylobacter resistance to antimicrobials including Ery.      

Ge et al. (2005) has made isogenic mutants of seven putative efflux pumps in addition to 

CmeABC and CmeDEF and evaluated the role of these efflux pumps in antibiotic 

resistance.  Those investigators observed that CmeABC is the only efflux system that 

influences antimicrobial resistance in Campylobacter.  Bioinformatics analysis revealed a 

total 13 drug efflux systems in C. jejuni, including  two RND-type systems (CmeABC 

and CmeDEF),four putative MFS efflux pumps,  four putative SMR type efflux pumps, 

one putative ABC type efflux pump, and two putative MATE (Lin et al., 2005c).  It is 

likely that other unidentified gene loci (e.g. Cj1687, Cj1375 and Cj1187c) contribute to 

C. jejuni resistance to clinically important antibiotics, particularly Ery.  We have initiated 

construction of isogenic mutants of unidentified efflux pumps and will determine MICs 

of various antibiotics for those mutants.  We will also reevaluate all efflux pumps studied 

by Ge et al (2005) using standard broth dilution method rather than agar dilution method 

used in Ge’s study (2005) because agar dilution method may not be as sensitive as broth 

dilution to differentiate small MIC difference with respect to specific antibiotics, such as 

Ery (Personal communication with Dr. Zhang, Iowa State University).  After completing 
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above studies, we anticipate identifying and characterizing other efflux system(s) 

involved in Ery resistance in C. jejuni.  

 

One striking and unique feature of CmeABC is its essential role in bile resistance 

and in vivo colonization (Lin et al., 2003).  Recent findings (Lin et al., 2005b) also 

demonstrated that CmeABC efflux pump is dramatically induced by bile salts, further 

highlighting the role of CmeABC in pathogenesis and supporting the hypothesis that the 

bile resistance is a natural function of CmeABC.  This notion is also supported by a 

recent study (Stintzi et al., 2005) in which expression of cmeABC was found to be highly 

up-regulated (up to 300-fold) in rabbit ileal loops.  These unique features of CmeABC 

make the EPI application even more appealing.  Inhibition of CmeABC efflux pump by 

EPI may directly increase the susceptibility of C. jejuni to in vivo bile salts, consequently 

decreasing the colonization level of Campylobacter in intestine.  In this study, presence 

of MC-207,110 resulted in dramatic MIC reduction (up to 512-fold) for various bile salts 

in C. jejuni strains (Table 10).  The reductions in MICs of bile salts are primarily 

mediated by the CmeABC efflux pump (Table 11).  Theses findings clearly support the 

feasibility of using EPI directly as a therapeutic agent against Campylobacter.  In E. coli 

and Salmomella, the AcrAB-TolC efflux pump (a homolog of the CmeABC pump) also 

contributes to bile resistance and inducible by bile salts (Prouty et al., 2004; Rosenberg et 

al., 2003).  Thus, it is likely that inhibiting bacterial efflux of bile salts with EPIs may be 

a general approach for developing therapeutic measures for enteric pathogens.  However, 

the effect of EPI in other enteric pathogens may not be as significant as that observed for 

C. jejuni because expression of AcrAB-TolC pump in E. coli and Salmonella was only 
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moderately induced by bile salts and the magnitude of MIC reduction in bile due to the 

mutation in pump is much smaller in E. coli and Salmonella than that in Campylobacter 

(Prouty et al., 2004; Rosenberg et al., 2003). 

 

From the standpoint of practical application, it is important to ensure that the EPIs 

not only work well in vitro, but also in vivo, where numerous confounding factors may 

affect EPI.  MC-207,110 and its derivatives have been evaluated for in vivo toxicity using 

mouse model system (Renau et al., 2003).  When administered via intravenous (iv) bolus 

injection, MC-207,110 displayed appreciable toxic effects (minimum dose causing 

lethality to > 66% of the animals tested is < 25 mg/kg).  However, a compelling 

derivative MC-04,124 was less toxic in rodents (Minimum dose causing lethality to > 

66% of the animals tested is >150 mg/kg) (Renau et al., 2003).  It has been observed that 

MC-207,110 was not stable in serum but MC-04,124 displayed high stability in serum 

(Personal communication with Dr. Olga Lomovskaya).  Both MC-207,110 and MC-

04,124 were used for evaluation of in vivo efficacy of EPI using chicken challenge model 

in this study.  Although the EPI was administered to chickens via route (oral delivery) 

different from that used in mice (iv) (Renau et al., 2003) in the first chicken study, a dose 

of 25 mg/kg and 150 mg/kg was chosen as highest dose for EPI MC-207,110 and MC-

04,124, respectively (Table 3).  Results showed that both MC-207,110 and MC-04,124 

reduced the percentage of colonization of chickens by C. jejuni S3B on day 2 post 

inoculation when compared to control animals, regardless of high or low dose.  It was 

pleasantly surprising to find that MC-207,110 also displayed inhibitory effect on C. jejuni 

colonization, which indicates that this EPI is stable and functional in the intestinal tract.  
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In addition, data also indicated that in vivo toxicity of EPI also depends on administration 

route.  Both EPIs were administered orally to chickens in this study and none of chickens 

treated with EPI (regardless of the dose) died throughout the study.  It is possible that 

physiological factors of gastrointestinal tract were responsible for the chickens being able 

to tolerate high doses of EPIs.  The major limitations of the first chicken study were the 

small number of chickens used in each group and that EPI was only administered a single 

time to chickens following inoculation of C. jejuni.  In the second chicken experiment, 

each group contained 9 or 10 chickens and three different EPI doses (3 mg/kg, 15 mg/kg, 

and 75 mg/kg for MC-207,110) were administered for three consecutive days following 

inoculation of C. jejuni.  However, MC-207,110 did not exert further reduction on the 

colonization of C. jejuni in chickens throughout the study following three consecutive 

EPI treatments (Figure 6).  It is likely that MC-207,110 is effective when it is in contact 

with Campylobacter in the upper and middle sections of the chicken intestinal tract, such 

as duodenum and jejunum, in the first day of inoculation.  However, after being 

inoculated into chicks, C. jejuni gradually established long-term colonization in two ceca, 

the predominant site for Campylobacter colonization in chickens that are immediately 

after long small intestine and before cloaca.  Thus, MC-207,110 may lose its efficacy 

after it passes through long small intestine and reaches the cecum, possibly due to 

degradation or binding by host factors.  We also consistently observed that high dose of 

MC-207,110 treatments led to increased C. jejuni colonization compared to low dose, 

suggesting that high dose of EPI MC-207,110 may affect the physiology of chicken 

intestine and promote C. jejuni colonization.  Overall, our chicken study strongly 

indicated that inhibition of Campylobacter efflux pump by EPIs is a potential mean for 
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therapeutic intervention to reduce colonization of C. jejuni in human and animal 

reservoirs. To develop clinically useful EPI compound, more studies using new lead 

series in conjunction with pharmacokinetics/pharmacodynamic analysis are needed in the 

future. 

 

 Several key issues (e.g. toxicity, in vivo stability, production cost) challenge the 

clinical application of EPIs.  Thus, alternative ways to inhibit CmeABC efflux pump 

should also be explored.  Since CmeC is inducible in vivo and is an essential OMP 

component of CmeABC efflux pump, anti-CmeC antibodies may function similarly to 

EPI in inhibiting CmeABC pumps in C. jejuni, as observed in this study.  Immune 

intervention by targeting CmeC may be an alternative way to inhibit the CmeABC efflux 

pump and avoid problems with EPI.  To test this hypothesis, we examined the effect of 

anti-CmeC peptide antibodies on the susceptibility of C. jejuni 81-176 to cholic acid, a 

representative bile salt.  As shown in Fig. 7, anti-CmeC antibodies are only directed 

against a portion of CmeC (aa 41to 248 of total 492 aa in length) (Lin et al., 2002). When 

compared to the growth in the presence of control serum (pre-immune serum, negative 

for CmeC), supplementation of anti-CmeC serum in MH broth containing sublethal 

concentration of cholic acid resulted in moderate but significant growth reduction (~ 0.6 

log unit), suggesting anti-CmeC antibodies specifically inhibit the function of CmeABC 

efflux pump and increase the susceptibility of C. jejuni to bile salts.  The inhibitory effect 

of the serum is not attributed to complement because both sera were inactivated at 56oC 

for 30 min prior to use to abolish complement activity. Since CmeC antibodies only 

target a partial fragment of CmeC that may only contain partial protective epitopes, the 
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antibodies against full CmeC antigenic structure likely exerts a more significant 

inhibitory effect on the Campylobacter grown in the presence of bile salts. Findings of 

this study plus other compelling evidences, reported recently (Lin et al., 2003, 2005 ab; 

Stintzi et al., 2005) strongly suggest that CmeC could be a novel subunit vaccine against 

Campylobacter.  More excitingly, since CmeC is an essential component in CmeABC 

efflux pump that contributes Campylobacter resistance to clinically important antibiotics, 

immunization of host animals with CmeC subunit vaccine may enhance the activity of 

clinical antibiotics against C. jejuni and CmeC may represent the first vaccine that can 

combat antibiotic resistance in bacteria. 
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Table 1. Key Campylobacter jejuni strains used in this study. 
 
Strain Descriptiona Source or 

Reference 
81-176 Wild-type; isolated from human Black et al., 1988 

S3B Wild-type; isolated from chicken Luo et al., 2003 
9B6 81-176 derivative; cmeB::kan Lin et al., 2002 

JL 141 S3B derivative; cmeB::kan This Study 
JL 150 81-176 derivative; in vitro selected Cipro-resistant mutant This Study 
JL 151 81-176 derivative; in vitro selected Cipro-resistant mutant This Study 
JL 152 81-176 derivative; in vitro selected Cipro-resistant mutant This Study 
JL 153 81-176 derivative; in vitro selected Cipro-resistant mutant This Study 
JL 154 S3B derivative; in vitro selected Ery-resistant mutant This Study 
JL 155 S3B derivative; in vitro selected Ery-resistant mutant This Study 
JL 156 S3B derivative; in vitro selected Ery-resistant mutant This Study 
JL 157 81-176 derivative; in vitro selected Ery-resistant mutant This Study 
JL 158 81-176 derivative; in vitro selected Ery-resistant mutant This Study 
JL 159 S3B derivative; in vitro selected Ery-resistant mutant This Study 
JL 160 S3B derivative; in vitro selected Ery-resistant mutant This Study 
JL 161 JL 157 derivative; cmeB::kan This Study 
JL 162 JL 158 derivative; cmeB::kan This Study 
JL 163 JL 159 derivative; cmeB::kan This Study 
JL 164 JL 160 derivative; cmeB::kan This Study 
JL 187 S3B derivative; in vitro selected Ery-resistant mutant This Study 
JL 188 S3B derivative; in vitro selected Ery-resistant mutant This Study 

 
     a Cipro: ciprofloxacin 

         Ery:  erythromycin 
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Strain Sourcea 
CJ 30 Feed 
CJ 31 Water from lagoon 
CJ 32 Water from lagoon 
CJ 33 Water from lagoon 
CJ 34 Water from lagoon 
CJ 35 Water from lagoon 
CJ 36 Water from lagoon 
CJ 37 Floor 
CJ 38 Floor 
CJ 39 Water from lagoon 
JL 10 Human 
JL 12 Bovine 
JL 20 Swine (C. coli) 
JL 21 Swine (C. coli) 
JL 22 Swine (C. coli) 
JL 25 Swine (C. coli) 
JL 36 Chicken 
JL 78 Human 
JL 88 Swine 
JL 93 Human 
JL 95 Ovine 
JL 114 Human 
JL 115 Human 
JL 116 Chicken 
JL 117 Chicken  
JL 118 Chicken  
JL 170 Turkey (C. coli) 
JL 171 Turkey (C. coli) 

 
 

a  Strains CJ 1 to CJ 39 were isolated from dairy farms in east Tennessee (kindly provided 
by Dr. Steve Oliver, University of Tennessee).  If not specified, all isolates are 
Campylobacter jejuni. 

Strain Sourcea 
CJ 1 Fecal swab 
CJ 2 Fecal slurry 
CJ 3 Fecal slurry 
CJ 4 Water from lagoon 
CJ 5 Water from lagoon 
CJ 6 Water from lagoon 
CJ 7 Water from lagoon 
CJ 8 Water from lagoon 
CJ 9 Water from lagoon 
CJ 10 Calf fecal swab 
CJ 11 Calf fecal swab 
CJ 12 Fecal slurry 
CJ 13 Fecal slurry 
CJ 14 Fecal slurry 
CJ 15 Water from lagoon 
CJ 16 Water from lagoon 
CJ 17 Bird dropping 
CJ 18 Bedding 
CJ 19 Floor 
CJ 20 Bedding 
CJ 21 Bedding 
CJ 22 Fecal slurry 
CJ 23 Fecal slurry 
CJ 24 Fecal slurry 
CJ 25 Water from lagoon 
CJ 26 Calf fecal swab 
CJ 27 Calf fecal swab 
CJ 28 Bedding 
CJ 29 Bedding 

 Table 2.  Campylobacter clinical isolates used in this study 
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    Table 3. Experiment design of the chicken studies (experiments A and B) 
 

Expt group EPI usage/name EPI Dose 
(mg/kg) 

EPI treatmenta # per 
Group 

1 (control) No N/A N/A 5 
2  Yes/MC-207,110 25  7 
3 Yes/MC-207,110 5  5 
4 Yes/MC-004,124 150  6 

A 

5 Yes/MC-004,124 30  

Single treatment: 30 
min after C. jejuni 
inoculation 

5 
1 (control) No N/A N/A 10 
2 Yes/MC-207,110 75  10 
3 Yes/MC-207,110 15  10 

B 

4 Yes/MC-207,110 3  

Three treatments: 30 
min, 24 h, 48 h after 
C. jejuni inoculation  9 

 

a Five-day-old chickens were inoculated with 105 CFU of C. jejuni S3B via oral gavage,    
followed by oral administration of EPI. 
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Table 4.  Susceptibilities of wild-type C. jejuni strains to antimicrobials in MH broth 
with or without efflux pump inhibitor MC-207,110 

Minimum Inhibitory Concentration (µg/ml) 
C. jejuni 81-176 C. jejuni S3B 

Antimicrobial 

MH MH + MCa MH MH + MCa 

Ciprofloxacin 0.063 0.031 (2) 0.125 0.125 (-) 
Nalidixic Acid 8 2 (4) 8 2 (4) 
Erythromycin 0.125 0.004 (32) 0.5 0.009 (64) 
Ampicillin 1 0.5 (2) 16 4 (4) 
Cefotaxime 0.125 0.063 (2) 8 2 (4) 
Rifampin 128 0.125 (1024) 128 0.063 (2048) 
Tetracycline 0.063 0.031 (2) 32 0.063 (512) 
Ethidium Bromide 0.25 0.063 (4) 0.5 0.25 (2) 
Fusidic Acid 128 2 (64) 512 2 (256) 
Novobiocin 16 0.125 (128) 64 0.125 (512) 
Cetylpyridinium Chloride 2 0.25 (8) 2 0.25 (8) 
Trisodium Phosphate 12,500 12,500 (-) 25,000 6,250 (4) 
Sodium Hypochlorite 62.5 62.5 (-) 15.6 15.6 (-) 

 
a The numbers in parentheses indicate the fold reductions in MICs for C. jejuni strain  
grown in MH broth containing 10 µg/ml of EPI MC-207,110 (MH + MC) compared to 
growth in plain MH broth (MH). “-” represents no observed MIC difference. 
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Minimum Inhibitory Concentration (µg/ml) 
81-176, cmeB::kan S3B, cmeB::kan 

 Antimicrobial 

MH MH+ MCa MH MH+ MCa 
 Ciprofloxacin 0.031 0.016 (2) 0.031 0.156 (2) 
 Nalidixic Acid 2 1 (2) 2 1 (2) 
 Erythromycin 0.016 0.004 (4) 0.063 0.002 (32) 
 Ampicillin 0.125 0.031 (4) 4 0.5 (8) 
 Cefotaxime 0.031 0.016 (2) 0.063 0.016 (4) 
 Rifampin 8 0.016 (512) 1 0.004 (256) 
 Tetracycline 0.031 0.031 (-) 8 4 (2) 
 Ethidium Bromide 0.25 0.031 (8) 0.031 0.031 (-) 
 Fusidic Acid 0.125 0.031 (4) 0.125 0.063 (2) 
 Novobiocin   0.063 0.016 (4) 0.063 0.016 (4) 
 
 

a The numbers in parentheses indicate the fold reductions in MICs for C. jejuni strain 
grown in MH broth containing 10 µg/ml of EPI MC-207,110 (MH + MC) compared to 
growth in plain MH broth (MH).  “-” represents no observed MIC difference. 
 
 

Table 5.  Susceptibilities of cmeB isogenic mutants to antimicrobials in MH broth with 
or without efflux pump inhibitor MC-207,110 



www.manaraa.com

 74

 
 

 
 
 
 
 

Erythromycin MIC reduction (n-fold) in the presence of 
MC-207,110 at a concentration (µg/ml) of: 

 
Strain 

 
Genotype 

0 0.25 0.5 1 2 4 8 16 
81-176 wild-type 1 4 8 32 64 64 256 NA 

9B6 81-176, cmeB- 1 2 2 4 4 16 NA NA 
S3B wild-type 1 1 2 4 8 32 64 NA 

JL141 S3B, cmeB- 1 2 4 4 8 16 NA NA 

Table 6.  Effects of EPI MC-207,110 combined with erythromycin against C. jejuni 
at various concentrations 
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a The numbers in parentheses indicate the fold reductions in MICs for C. jejuni strain 
grown in MH broth containing 10 µg/ml of EPI MC-207,110 (MH + MC) compared to 
growth in plain MH broth (MH).  
 
 
 
 
 
 
 
 
 
 
 
 

MIC of erythromycin (µg/ml)  
Strain 

 

 
Genotype 

MH MH + MC a 
C. jejuni 81-176 wild-type 0.125 0.004 (32) 
JL 157 81-176 derivative, EryR 0.5 <0.031 (>16) 
JL158 81-176 derivative, EryR 4 0.125 (32) 
C. jejuni S3B wild-type 0.5 0.009 (64) 
JL 154 S3B derivative, EryR 2 <0.031 (>64) 
JL 155 S3B derivative, EryR 2 <0.031 (>64) 
JL 156 S3B derivative, EryR 2 <0.031 (>64) 
JL159 S3B derivative, EryR 16 0.25 (64) 
JL160 S3B derivative, EryR 4 0.125 (32) 
JL 161 JL 157 derivative; cmeB::kan 0.063 0.008 (8) 
JL 162 JL 158 derivative; cmeB::kan 0.063 0.002 (32) 
JL 163 JL 159 derivative; cmeB::kan 0.25 0.031 (8) 
JL 164 JL 160 derivative; cmeB::kan 0.125 0.031 (4) 

Table 7.  Susceptibilities of erythromycin-resistant (EryR ) C. jejuni strains to 
erythromycin in the presence of efflux pump inhibitor MC-207,110 or absence of 
functional CmeABC efflux pump
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a  The numbers in parentheses indicate the fold reductions in MICs for C. jejuni strain 
grown in MH broth containing 10 µg/ml of EPI MC-207,110 (MH + MC) compared to 
growth in plain MH broth (MH).  

MIC of erythromycin (µg/ml)  
Strain 

 

 
Genotype 

MH MH + MC a 
C. jejuni 81-176 wild-type 0.063 0.031 (2) 

JL 150 81-176 derivative, CiproR 8 8 (-) 
JL 151 81-176 derivative, CiproR 8 8 (-) 
JL 152 81-176 derivative, CiproR 32 16 (2) 
JL 153 81-176 derivative, CiproR 16 8 (2) 

Table 8.  Susceptibilities of ciprofloxacin-resistant C. jejuni strains to ciprofloxacin 
in the presence of efflux pump inhibitor MC-207,110 
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a The data represent the mean from two treatments. 
 
 
 
 
 

Frequency of Erythromycin-resistant mutants   
(MH agar plates + 4 µg/ml of Erythromycin) 

C. jejuni strain Erythromycin MIC 
(µg/ml) 

MC-207,110 (−)a MC-207,110 (+) a

81-176 0.125 1.7 x 10-8 <1.6 x 10-10 

S3B 0.5 8 x 10-8 <5 x 10-11 

Table 9.  Effect of presence of EPI MC-207,110 (10 µg/ml) on the frequency of 
emergence of erythromycin-resistant mutants in C. jeuni.
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Table 10.  Susceptibilities of wild-type C. jejuni to detergent and various bile salts in 
the presence and absence of EPI 

Minimum Inhibitory Concentration (µg/ml) 
C. jejuni 81-176 C. jejuni S3B 

Antimicrobial 

MH MH + MCa MH MH + MCa 

Sodium Dodecyl Sulfate 256 4 (64) 256 4 (64) 
Cholic Acid 4,000 250 (16) 8,000 250 (32) 
Taurocholic Acid 64,000 125 (512) 64,000 500 (128) 
Chenodeoxy Cholate 4,000 62.5 (64) 8,000 125 (64) 
Glychocholate 32,000 250 (128) 32,000 250 (128) 

 
 
a The numbers in parentheses indicate the fold reductions in MICs for C. jejuni strain 
grown in MH broth containing 10 µg/ml of EPI MC-207,110 (MH + MC) compared to 
growth in plain MH broth (MH). “-”represents no observed MIC difference. 
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Table 11.  Susceptibilities of cmeB isogenic mutants of C. jejuni to detergent and 
various bile salts in the presence and absence of EPI 

Minimum Inhibitory Concentration (µg/ml) 
81-176, cmeB::kan S3B, cmeB::kan 

Antimicrobial 

MH MH + MCa MH MH + MCa 

Sodium Dodecyl Sulfate 64 1 (64) 128 4 (32) 
Cholic Acid 125 15.625 (8) 250 31.25 (8) 
Taurocholic Acid 1000 31.25 (32) 1000 62.5 (16) 
Chenodeoxy Cholate 15.6 7.8 (2) 31.3 15.6 (2) 
Glychocholate 1000 125 (8) 1000 250 (4) 

 
a The numbers in parentheses indicate the fold reductions in MICs for C. jejuni strain 
grown in MH broth containing 10 µg/ml of EPI MC-207,110 (MH + MC) compared to 
growth in plain MH broth (MH).  
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Cholate MIC reduction (n-fold) in the presence of 
MC-207,110 at a concentration (µg/ml) of: 

 
Strain 

 
Genotype 

0 0.25 0.5 1 2 4 8 16 
81-176 wild-type 1 1 1 1 8 16 64 NA 

S3B wild-type 1 1 1 2 4 16 64 NA 
JL141 S3B, cmeB- 1 1 1 1 2 4 NA NA 

Table 12.  Effects of EPI MC-207,110 combined with cholate against C. jejuni at 
various concentrations 
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Figure 1.  Structures of efflux pump inhibitors used in experiments.  MC-207,110 is 
available from Sigma and the formal name is Phe-Arg β-naphthyl-amide dihydrochloride.  
MC-207,110 was used throughout all in vitro experiments and also the in vivo 
experiment; MC-04,124 was primarily used for the in vivo experiment.   
 

 
MC-207,110 MC-04,124 
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Figure 2.  Construction and confirmation of isogenic cmeB mutant.  (A)  
Construction of cmeB mutant and PCR confirmation.  Purified genomic DNA 
from 9B6 (lane 2) was used for natural transformation.  cmeB specific primers 
ES5 and ERP-2 were used in PCR with DNA samples from 81-176 (lane 3), 9B6 
(lane 4), S3B (lane 5) and JL 141 (lane 6).  Lane 1 is standard 1kb ladder 
(Promega).  (B)  Susceptibility of JL 141 and S3B to bile salt using disk diffusion 
assay.  Wild-type S3B (right) and its putative isogenic cmeB mutant cells were 
spread onto MH agar plates.  A sterile disk was plated in the center and 10µl of 
5% cholic acid was placed on disk.  Plates were incubated at 42°C under 
microaerophilic conditions for two days.
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Figure 3.  PCR amplification of specific C. jejuni gene fragments for sequence 
analysis.  A)  Amplification of 23S rRNA gene.  23S rRNA gene specific primers 
were used in PCR with DNA samples from JL155 (lane 2), JL 156 (lane 3), JL 
159 (lane 4), JL 160 (lane 5), JL 187 (lane 6) and JL 188 (lane 7).  B) 
Amplification of Campylobacter outer membrane protein gene (cmp).  cmp
specific primers were used in PCR with DNA samples from inoculated S3B (lane 
2), and two isolates from feces (output; lane 3, 4).  
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Figure 4.  Effects of MC-207,110 on the susceptibilities of 57 clinical Campylobacter 
isolates to erythromycin (Ery). 
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Figure 5.  Effect of EPI treatment on the colonization of C. jejuni S3B in 
chickens.  Five-day-old chickens in each group were inoculated with 105 CFU of 
C. jejuni S3B via oral gavage.  Thirty minutes following C. jejuni inoculation, 
MC-207,110 (EPI 1) or MC-04,124 (EPI 2) were orally administered one time at 
either high (H) or low (L) dose.  The groups were as follows:  A)  control- no EPI 
administered; B)  EPI 1 at a high dose of 25 mg/kg; C)  EPI 1 at a low dose of 5 
mg/kg; D)  EPI 2 at a high dose of 150 mg/kg; and E)  EPI 2 at a low dose of 30 
mg/kg. 
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Figure 6.  Effect of multiple EPI treatment on the colonization of C. jejuni S3B 
in chickens.  Five-day-old chickens in each group were inoculated with 105 CFU 
of C. jejuni S3B via oral gavage.  30 min., 24 hr. and 48 hr. following C. jejuni
inoculation, MC-207,110 was orally administered at either high (H), medium 
(M) or low (L) dose.  The groups were as follows:  1)  control- no EPI 
administered; 2)  EPI at a high dose of 75 mg/kg; 3)  EPI at a medium dose of 15 
mg/kg; 4)  EPI at a low dose of 3 mg/kg.  A)  Percent of chickens colonized with 
Campylobacter following treatment.  B) Shedding levels of chickens colonized 
with Campylobacter following treatment.  
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Figure 7.  Growth response of C. jejuni 81-176 to CmeC-negative and CmeC-
positive serum.  The log-phase culture of 81-176 was diluted to approximately       
2 x 106 cfu/ml in MH broth containing sublethal concentrations of cholic acid (2 
mg/ml).  Anti-CmeC and control sera were added to cells with 1:10 dilution and 
cells were incubated for 6 hours at 42°C under microaerophilic conditions.  
Samples were diluted in MH broth and plated on MH agar plates to determine 
bacterial viability.  Each bar represents the mean value obtained from triplicate 
assays.   
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Figure 8.  Purification of rabbit IgG by protein G affinity chromatography. (A)  
Chromatography of purified rabbit IgG with ImmunoPure (G) IgG Purification 
Kit (Pierce).  Following collection of unbound protein using 10 ml of binding 
buffer (pH 5.0), the bound rabbit IgG was eluted by low pH of elution buffer 
(pH 2.8).  (B)  Analysis of the purification of IgG from rabbit serum by SDS-
PAGE.  Proteins were stained with 0.1% Comassie blue.  Lane contents were 1) 
molecular mass standard; 2) crude rabbit serum, 1:50 dilution in PBS; 3) 
unbound protein which was eluted in the protein G column flowthrough; 4-9) 
aliquots from protein G column, corresponding to fraction number 2, 3, 4, 5, 6 
and 7, respectively in panel (A).

(A)
Elution buffer
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